Zaque Alves de Araújo Júnior

REPROCESSAMENTO DE SÍSMICA DE ALTA RESOLUÇÃO E GEOLOGIA REVELADA DA PLATAFORMA MODERNA DA BACIA DE CAMPOS

Dissertação de Mestrado (Geologia)

UFRJ Rio de Janeiro 2011

Zaque Alves de Araújo Júnior

REPROCESSAMENTO DE SÍSMICA DE ALTA RESOLUÇÃO E GEOLOGIA REVELADA DA PLATAFORMA MODERNA DA BACIA DE CAMPOS

Dissertação de Mestrado submetida ao Programa de Pós-graduação em Geologia, Instituto de Geociências, da Universidade Federal do Rio de Janeiro – UFRJ, como requisito necessário à obtenção do grau de Mestre em Ciências (Geologia).

Área de concentração:

Geologia econômica

Orientadores:

Carlos Jorge de Abreu Leonardo Fonseca Borghi de Almeida

Rio de Janeiro Junho/2011 ZAQUE, Alves de Araújo Júnior

Reprocessamento de sísmica de alta resolução e geologia revelada da plataforma moderna da Bacia de Campos / Zaque Alves de Araújo Jr. - - Rio de Janeiro: UFRJ / IGeo, 2011.

11, 81 f. : il., 8 apênd., 3 anexos; 30cm

Dissertação (Mestrado em Geologia) – Universidade Federal do Rio de Janeiro, Instituto de Geociências, Programa de Pós-graduação em Geologia, 2011.

Orientadores: Carlos Jorge de Abreu, Leonardo Borghi da Fonseca

1. Geologia. 2. Geologia econômica – Dissertação de Mestrado. I. Carlos, Jorge de Abreu. II. Universidade Federal do Rio de Janeiro, Instituto de Geociências, Programa de Pós-graduação em Geologia. III. Título. Zaque Alves de Araújo Júnior

REPROCESSAMENTO DE SÍSMICA DE ALTA RESOLUÇÃO E GEOLOGIA REVELADA DA PLATAFORMA MODERNA DA BACIA DE CAMPOS

Dissertação de Mestrado submetida ao Programa de Pós-graduação em Geologia, Instituto de Geociências, da Universidade Federal do Rio de Janeiro – UFRJ, como requisito necessário à obtenção do grau de Mestre em Ciências (Geologia).

Área de concentração:

Geologia econômica

Orientadores:

Carlos Jorge de Abreu Leonardo Borghi da Fonseca

Aprovada em:

Por:

Presidente: Nome, Instituição

Nome, Instituição

Nome, Instituição

Aos meus pais pelo amor e incentivo...

Agradecimentos

Primeiramente a Deus, pela vida e a Fé como dom gratuito os quais não sou merecedor.

Aos meus pais Zaque e Geny que sempre me incentivaram a estudar e ser uma pessoa de bem, meus exemplos de vida.

A minha sogra Sandra Mara pelo amor e carinho em suas orações.

As minhas irmãs Simone, Cíntia e Poliana, por mostrarem que é possível profissionalismo e família feliz.

A minha esposa querida, Roberta Gabriela pela paciência, amor e incentivo, mesmo nos momentos difíceis, você é o meu diamante mais precioso.

Ao amigo doutor Carlos Jorge de Abreu, pelo incentivo a crescer e espírito prático, também por ceder os dados utilizados nesta dissertação pertencentes ao Projeto FINEP/CTPETRO/UFRJ nº 65.00.0405.00, intitulado "Análise integrada do sistema área fonte, *by-pass*, zona de acumulação do sistema turbidítico Almirante Câmara, Recente, bacia de Campos"; também a doutora Paula, amiga de todas as horas e ao doutor Leonardo Borghi pela dedicação sem igual nas aulas da pós-graduação.

Aos queridos doutor Renato Silveira e professor Francisco Valdyr, companheiros de trabalho no Bdep/Anp, pelo incentivo em toda a minha carreira profissional.

Aos amigos fiéis Marcelo Rezende e Leonardo Penha, companheiros de campo na geologia, que sempre estiveram ao meu lado, vocês são eternos como as rochas que admiram!

Aos meus gerentes da Landmark/Halliburton, Vívian Bigal, Geraldo Calainho, Leo Nascimento, Rubio Leonardo, Fernanda Jacob e Kelly Small por terem me apoiado nesse projeto de mestrado e disponibilizado os *softwares* necessários para o reprocessamento das linhas sísmicas.

Aos amigos da Halliburton, Marcus Santoro, Henrique Vianna, Carlos Melo, Eduardo, Ricardo, Marcelo Amorin, Marcus Santos, Washington, Willians, tia Teresinha, Mariane, Rafael Melo, Stevenson Hall e Tiago Alecrin, esses dois últimos me ajudaram muito com os fluxos de reprocessamento sísmico.

Aos amigos do projeto *Downpos*, Francisco Furriel, Daniel Vander, Carolina Kelesoglu, Fabiano Silva, Marcelo Brum e Alessandra Silva que tanto me incentivou a terminar essa dissertação.

Ao departamento de Geologia da UFRJ pela oportunidade de desenvolver esta dissertação. Também aos eternos amigos professores Hélio Penha e Joel Valença que como exemplos ícones na geologia mundial, deixam saudades a todos nós... Hoje devem estar mapeando as rochas do Paraíso...!

Resumo

ARAÚJO JR., Zaque. **Reprocessamento de sísmica de alta resolução e geologia revelada da plataforma moderna da Bacia de Campos**. Rio de Janeiro, Ano. 11, 60 f. Dissertação (Mestrado em Geologia) – Programa de Pós-graduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2011.

Na década de 60, a sísmica de reflexão era utilizada na indústria petrolífera com a finalidade exclusiva de encontrar trapas e estruturas que possibilitassem a acumulação de petróleo. Conceitos sobre atributos sísmicos e características petrofísicas obtidas a partir do traço sísmico, só foram considerados a partir da década de 70. Nos anos 80, vários atributos obtidos na análise digital foram associados diretamente a diagnose e interpretação de jazidas, sendo importantes para resolução e imageamento de feições geológicas e reservatórios. Novas e melhores tecnologias sobre reprocessamento e imageamento, vêm sendo incorporadas à metodologia sísmica, uma vez que a qualidade de dados e imagens é essencial para uma boa interpretação. Nesse trabalho, procurou-se mostrar a eficácia do uso da sísmica de reflexão, na região plataformal da Bacia de campos, após o reprocessamento, com aplicação de algoritmos que possibilitaram o refinamento das reflexões discriminando sequências, falhas, discordâncias e paleocanais presentes na plataforma. A sísmica utilizada nesta dissertação é de alta resolução, contudo o processamento original deixou muito a desejar, apresentando muitos ruídos e múltiplas; com isso o foco desse trabalho passou a ser o reprocessamento de três seções sísmicas na plataforma da Bacia de Campos. Após o reprocessamento, com a migração dos dados em tempo pela técnica Kirchhoff, precedida de uma análise de freqüência espectral, alcançou-se uma melhor e mais detalhada interpretação das feições discriminadas.

Palavras-chave: Bacia de Campos, sísmica de alta resolução e reprocessamento

Abstract

ARAÚJO JR., Zaque. **Reprocessamento de sísmica de alta resolução e geologia revelada da plataforma moderna da Bacia de Campos**. [*Reprocessing of high resolution seismic and geology revealed on modern platform of Campos Basin.*] Rio de Janeiro, Ano. 10, 60 f. Dissertação (Mestrado em Geologia) – Programa de Pósgraduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2010.

In the 60s, the seismic reflection was used in the oil industry for the sole purpose of finding traps and structures that enable the accumulation of petroleum. Concepts of seismic attributes and petrophysical characteristics obtained from the seismic trace were considered only from the 70s. In the 80s, several attributes obtained from digital analysis were directly associated to the diagnosis and interpretations of acumulations, being important for the resolution and imaging of geological features and reservoirs. New and better technology about seismic acquisition, processing and imaging, have been incorporated in the seismic methodology because data and image quality is essential for a good interpretation. This work investigated the efficiency in using of seismic reflection after reprocessing lines of the modern Campos platform, with application of algorithms that controlled the refinement of the reflections, which allowed identification of faults, discordances and old channels present in the platform. The seismic used in this paper has high resolution, but the initial processing left much error allowing too much noise and multiples, thus the main focus of this work became the reprocessing of three seismic sections on the platform in the Campos Basin. After reprocessing, with data migration in time by Kirchhoff's technique, preceded by an analysis of frequency spectrum, a better and more detailed interpretation of geological features identified was achieved.

Key-Words: Campos Basin, high resolution seismic and reprocessing

Lista de figuras

Figura 1 – Mapa batimétrico em cotas de 100 metros, mostrando a plataforma e os canais erosivos no talude da Bacia de Campos, e o posicionamento das três linhas reprocessadas neste trabalho
Figura 2 – Mapa com o posicionamento das linhas 3a, 4a e 9, aquisitadas com o financiamento do projeto FINEP/CTPETRO/UFRJ nº 65.00.0405.00
Figura 3 – Modelo digital da geomorfologia do fundo oceânico da Bacia de Campos5
Figura 4 – Separação entre América do Sul e África gerando bacias marginais5
Figura 5 – Carta estratigráfica da Bacia de Campos segundo Winter <i>et al.</i> ,20077
Figura 6 – Seção sísmica da Bacia de Campos identificando o Marco Cinza e Marco Azul12
Figura 7 – Sedimentos pleistocênicos sobre a Bacia de Campos e posicionamento em vermelho das linhas reprocessadas nessa dissertação13
Figura 8 – Ondas no domínio espaço com seus parâmetros inerentes15
Figura 9 – Ondas no domínio tempo com seus parâmetros inerentes15
Figura 10 – Parâmetros de geometria analisados em um levantamento marítimo18
Figura 11 – Técnica CMP, amostrando um ponto em subsuperfície, várias vezes gerando um <i>gather</i> de traços sísmicos
Figura 12 – Esquema de fluxos de processamento usados em sísmica20
Figura 13 – Padrões de terminações de refletores sísmicos21
Figura 14 – Padrões internos de configurações em sismofácies23
Figura 15 – Tipos de geometrias de preenchimento mais comuns identificáveis na sísmica24
Figura 16 – Linhas sobre a plataforma do Projeto <i>Canyon</i> de levantamento sísmico marítimo executado pela empresa Georadar25
Figura 17 – Foto do Giroscópio Robertson modelo RGC 10 usado no apoio a orientação26
Figura 18 – Tela do sistema de navegação PRECISELAY27
Figura 19 – Foto do arranjo dos canhões de ar comprimido28

Figura 20 – Parâmetros da geometria comuns nas três linhas sísmicas
Figura 21 – Parâmetros de entrada da ferramenta <i>Auto Marine 2D Geometry</i> 31
Figura 22 – Ferramenta <i>Geometry Setup</i> , com parâmetros geométricos e o diferencial da direção de Azimuth para cada linha32
Figura 23 – Ferramenta <i>Pattern</i> computando os valores de <i>Offset</i>
Figura 24 – Tabela <i>Source</i> , com valores associados a cada registro de campo33
Figura 25 – Ferramenta 2D Marine Binning que tem por finalidade criar digitalmente os CDPs
Figura 26 – Sismograma sintético do dado não <i>pre-stack</i> com ruídos de baixa frequência34
Figura 27 – Ferramenta <i>Interactive Spectral Analysis</i> onde podem ser identificados grupos de freqüência
Figura 28 – Ferramenta <i>Bandpass Filter</i> aplicando filtros <i>Ormsby</i> trapezoidais nos ranges de freqüência selecionados
Figura 29 – Ferramenta <i>Spiking/Predictive Deconvolutio</i> utilizada na etapa de deconvolução do dado sísmico
Figura 30 – Curva hiperbólica do refletor NMO37
Figura 31: Gráfico de análise das velocidades por grupos de CDPs para empilhamento dos traços o que pode ser visto a direita do gráfico
Figura 32: Volume empilhado de velocidade para a linha 3A
Figura 33: Volume empilhado de velocidade para a linha 4A
Figura 34: Volume empilhado de velocidade para a linha 9
Figura 35: Somatório de um grupo de traços
Figura 36: Linha 3A versão Stack ou primeiro empilhamento. Nessa já se observam reflexões com boa definição e interpretáveis até 280 ms40
Figura 37: Linha 4A versão Stack ou primeiro empilhamento. O início da linha apresenta reflexões com baixa impedância entre 200 e 400 ms e reflexões com alta impedância de 600 a 700 ms
Figura 38: Linha 9 versão Stack ou primeiro empilhamento. Apresenta reflexões com alta impedância até 300 ms, após isso as reflexões são difusas e com baixa impedância para toda a linha

Figura 41: Linha 4A versão MIG. Nessa etapa do processamento, os eventos estão devidamente posicionados e se observam reflexões com boa definição e interpretáveis até 200 ms, porém a migração realçou as amplitudes de reflexões entre 600 e 700 ms.......45

Figura 43: Alto de Cabo Frio com linhas sísmicas posicionadas sobre a sua borda. (Fonte: Figura 46: Estruturas de falhamento normal identificado na linha sísmica 4A com origem em soerguimento gerado por magmatismos do Terciário......49 Figura 47: Estruturas de falhamento normal identificado na linha sísmica 9 geradas por blocos Figura 48: Linha 3A apresentando falha normal (preto), o FM e as discordâncias A, B e C...51 Figura 49: Linha 4A apresentando falha normal em preto, o FM e a discordância A......51 Figura 50: Paleocanais com preenchimento vertical e complexo, identificados na linha 3A, dentro da sismosequência compreendida entre a possível discordância Pleistoceno-Holoceno e Figura 51: Paleocanais com preenchimento vertical aparentando alargamento das bordas na linha 4A, compreendidos entre a discordância A (possível discordância Pleistoceno-Figura 52: Sismofácies caótica (linha 4A) possivelmente devido à existência de banco de calcários......53 Figura 53: Comparação para seção sísmica 3A original e reprocessada com maior ganho natural em amplitudes e refletores interpretáveis nítidos em profundidades abaixo de 0,3

Figura 54: Parte da seção sísmica 3A mostrando refletores interpretáveis até 400 ms......55

Figura 55: Comparação entre seção original e reprocessada para a linha sísmica 9, salientando	0
a superfície ondulada por escavação de paleocanais com melhores amplitudes visíveis para	a
seção com reprocessamento	5

Figura 56: Parte da linha 3A com discordâncias, paleocanais e falhas em flor......57

Lista de tabelas

Tabela 1 – Tipos de fontes e receptores utilizados na aquisição sísmica......18

Lista de quadros

Quadro 1	– Parâmetros	vistos em	sismofácies	X interp	retação	geolóc	gica	22
					3			

LISTA DE ABREVIATURAS E SIGLAS

- AAPG: American Association of Petroleum Geologists
- bar Unidade de pressão
- BHP Potência do motor em cavalos (Break Horse Power)
- cc Centímetro cúbico
- CDP Common Depth Point
- CDP ponto de profundidade comum (common depht point)
- cfm Manufatura de Fluxo Contínuo (Continuous Flow Manufacturing)
- cm Centímetro
- CMP ponto médio comum (common mid point)
- E&P Exploração e Produção
- FFID Identificador do registro de campo (Field File Identificator)
- Fm Formação
- ft/in³ Pé por polegada cúbica
- GPS Sistema de Posicionamento Global (Global Positioning System)
- Hz Hertz
- kg Quilograma
- km² Quilômetro quadrado
- l/min Litro/minuto
- LAGESED Laboratório de Geologia Sedimentar
- m Metro
- Ma Milhões de anos
- mm Milímetro
- ms Milissegundo
- NMO Correção das reflexões e velocidade sísmica (Normal Moveout)
- P Primária (onda primária)
- psi Libra por polegada quadrada (pound per square inch)
- RO Relatório Observador
- S Secundária (onda secundária)
- SDR Reflexões de mergulho (seaward dipping reflections)
- Sen Seno

- SP Ponto de tiro (shot point).
- TNT Trinitrotolueno
- Ton Toneladas
- UFRJ Universidade Federal do Rio de Janeiro
- UTM Universal Transverse Mercator

Sumário

Agradecimentos	vi
Resumo	viii
Abstract	ix
Lista de figuras	Х
Lista de tabelas	xiv
Lista de quadros	xv
Lista de abreviaturas e siglas	xvi
1 INTRODUÇÃO	1
1.1 Objetivos do estudo	3
2 ASPECTOS GEOLÓGICOS DA BACIA DE CAMPOS	4
2.1 Localização	4
2.2 Gênese	4
2.3 Evolução tectono-sedimentar da Bacia de Campos	6
2.3.1 Supersequência Rifte	8
2.3.2 Supersequência Pós-Rifte	8
2.3.3 Supersequência Drifte	9
3 METODOLOGIA	14
3.1 Dados sísmicos	14
3.2 Sísmica de reflexão	15
3.2.1 Fundamentos	15
3.2.2 Aquisição	17
3.2.3 Processamento	19
3.2.4 Sismoestratigrafia	20
3.2.4.1 Discordância	20
3.2.4.2 Padrões de terminações de reflexões sísmicas	21
3.2.4.3 Sismossequência	22
3.2.4.4 Sismofácies	22
4 AQUISIÇÃO DAS LINHAS SÍSMICAS	25
4.1 Aquisição dos dados	25
4.1.1 Equipamentos	26

5 REPROCESSAMENTO DAS LINHAS SÍSMICAS	30
5.1 Geometria	30
5.2 Ruídos	34
5.3 Deconvolução	36
5.4 Análise de velocidades	37
5.5 Empilhamento dos traços (<i>Stack</i>)	39
5.6 Migração	43
6 INTERPRETAÇÃO GEOLÓGICA DAS LINHAS	47
6.1 Falhas	47
6.2 Discordâncias	50
6.3 Sismofácies de preenchimento	51
6.4 Sismofácies de alta impedância	53
7 RESULTADOS COMPARADOS	54
CONCLUSÕES	58
Referências bibliográficas	61
Anexo A, B e C – Relatórios de observador	62
Apêndice A, B, C, D, E, F, G e H – Fluxos de processamento	63

1 INTRODUÇÃO

Até o momento, aproximadamente 90% da produção de petróleo no Brasil provém de acumulações de hidrocarbonetos em reservatórios arenosos depositados em águas profundas (turbiditos). Para o entendimento dos modelos de deposição e de sua área fonte é importante compreender o suprimento e os caminhos por onde passam tais sedimentos até atingirem o seu local final de acumulação. A plataforma atual da bacia de Campos, com mais de cem quilômetros de largura, com certeza, tem exercido grande influência neste processo.

Por isso, é necessário salientar a importância científica e tecnológica de se avançar no conhecimento geológico da plataforma da bacia de Campos, visando entender a dinâmica de fluxo sedimentar que atinge os sítios deposicionais de turbiditos e lobos pós-talude.

A área platafomal da Bacia de Campos é sub-horizontal, possuindo largura variável sendo mais larga ao sul e estreita ao norte, apresentando gradiente máximo de 1:1000, seu domínio vai da face de praia até o talude continental, com limite na quebra da plataforma (figura 1). Nela, houve uma sequência progradante muito espessa, ocasionada por deposição constante de sedimentos terrígenos e subsidência térmica; também apresenta vestígios de drenagem escavada possivelmente em épocas de nível de mar rebaixado, direcionada ao talude (Lima, 2003).

Nas áreas de talude existem feições erosivas por onde correm fluxos sedimentares terrígenos e conseqüente deposição posterior, formando depósitos de mar profundo e sistemas de leques submarinos, principalmente turbiditos constituindo os mais importantes reservatórios da Bacia de Campos (Peres, 1990), até a descoberta dos reservatórios pré-sal.

Nesta dissertação, serão mostrados os resultados do reprocessamento e análise, na plataforma sul da Bacia de Campos, de duas seções sísmicas *strike* com cotas batimétricas variando entre 50 e 80 metros, e uma seção *dip* com batimetria variando de 20 a 70 metros. As linhas originais, com processamento anterior, foram utilizadas apenas para comparação com o reprocessamento executado em dados brutos, remasterizado das fitas originais para disco rígido de memória, sendo finalizado com migração em formato SEG-Y. O primeiro processamento apresentou muitos ruídos de baixa frequência e múltiplas, por isso foi necessária uma análise de frequência por espectro; uma vez que o dado é de alta resolução, foi importante identificar com maior exatidão a menor e a maior frequência desejável. Após o

reprocessamento, houve melhorias na qualidade de imagem dos refletores sísmicos, o que possibilitou a interpretação de feições geológicas e estruturais na plataforma atual.

Figura 1 – Mapa batimétrico em cotas de 100 metros, mostrando a plataforma e os canais erosivos no talude da Bacia de Campos, e o posicionamento das três linhas reprocessadas neste trabalho (Viana, 1998).

1.1 Objetivos do estudo

Os principais objetivos desse estudo foram:

- O reprocessamento de três linhas sísmicas 2D de alta resolução, 3A, 4A e 9, localizadas na plataforma ao sul da Bacia de Campos (figura 2), obtidas mediante um levantamento sísmico de alta resolução executado pelo projeto FINEP/CTPETRO/UFRJ nº 65.00.0405.00 com sede no LAGESED, Laboratório de Geologia Sedimentar da UFRJ, com a finalidade de melhorar a resolução em maiores profundidades, eliminando ruídos e reflexões múltiplas muito comuns nas linhas originais.

- O mapeamento de feições deposicionais e estruturais a partir da superfície do fundo marinho até profundidades interpretáveis nas linhas sísmicas de alta resolução, atingindo espessuras maiores do que nas linhas originais, o que em tempo duplo, equivale a 150 ms.

Figura 2 – Mapa com o posicionamento das linhas 3a, 4a e 9, levantadas com o financiamento do projeto FINEP/CTPETRO/UFRJ nº 65.00.0405.00.

2 ASPECTOS GEOLÓGICOS DA BACIA DE CAMPOS

2.1 Localização

A bacia sedimentar de Campos ocorre em uma área de 100 mil quilômetros quadrados (km²), até a cota batimétrica de aproximadamente 2000 m, estendendo-se do Estado do Espírito Santo, nas proximidades de Vitória, até a cidade de Cabo Frio, localizada no litoral norte do Estado do Rio de Janeiro. Em terra, a oeste possui apenas 500 km² com limites restritos ao delta do Rio Paraíba do Sul. Para norte, o isolamento é parcial da Bacia do Espírito Santo pelo Alto de Vitória onde uma parte elevada do embasamento coincide com a terminação oeste da Cadeia de Vitória-Trindade, importante lineamento oceânico, porém em águas profundas não existe com clareza uma separação entre as bacias de Campos e Espírito Santo. Ao sul seu limite é o Alto de Cabo Frio, importante formação geológica que surgiu com o soerguimento de rochas muito antigas durante os movimentos da crosta terrestre quando da abertura do Oceano Atlântico (*site: Click Macaé*).

2.2 Gênese

O início da formação da Bacia de Campos foi há aproximadamente 150 milhões de anos, no final do período geológico Jurássico, com a separação entre a América do Sul e o continente Africano, fato que determinou os limites atuais da costa brasileira. Este afastamento deu origem a uma grande bacia, denominada Bacia Atlântica (Dias. *et al.*, 1990); esta continua se expandindo a uma taxa aproximada de dois centímetros por ano. Houve inicialmente, com a separação, junto aos limites dos novos continentes, a formação de bacias sedimentares, como as de Pelotas, Santos, Campos e Espírito Santo na costa oriental do Brasil; e no lado ocidental do continente africano Cuanza, Gabão e Cabinda, entre outras (Figura 4).

Desde o Albiano, as plataformas marinhas se instalaram em tais bacias e tiveram suas variações climáticas e movimentos tectônicos, ocasionando variações no nível do mar com alterações da sua linha de costa. Isto gerou grandes modificações no processo deposicional da plataforma e talude; sua geomorfologia foi controlada principalmente pela tectônica salífera subjacente e pela dinâmica deposicional do Mioceno Superior, tendo uma arquitetura resultante das variações do nível do mar, da atuação de correntes de contorno, remobilização

de sedimentos, construções estruturais e sistemas turbidídicos associados a redes fluviais no continente (Figura 3). A Petrobras realizou uma sistemática amostragem de *piston cores* durante a década de 90, vindo a constatar, após datações do fundo marinho, que esta geomorfologia representa uma visão do final do Pleistoceno; estes estudos também informam que a elevação do nível do mar, ocorrida durante o Holoceno minimizou quase todos os processos sedimentares siliciclásticos atuantes na área (Schereiner, 2008).

Figura 3 – Modelo digital da geomorfologia do fundo oceânico da Bacia de Campos. Fonte: Schereiner *et al.* (2008).

Figura 4 – Separação entre América do Sul e África gerando bacias marginais. Fonte: Bizzi *et al.* (2003).

2.3 Evolução tectono-sedimentar da Bacia de Campos

O embasamento cristalino da Bacia de Campos é formado por gnaisses pré-cambrianos que, segundo Winter *et al.* (2007), pertencem à Província Proterozóica Ribeira; estes também afloram em áreas vizinhas à bacia marginal, porém ao sul, a Bacia de Campos é limitada pelo Arco de Cabo Frio, onde existe uma intercalação de sedimentos turonianos a campanianos com rochas vulcanoclásticas, alguns diques de diabásio e basaltos de 90 a 80 Ma, sugerindo magmatismo persistente durante a evolução da bacia (Rangel, 1994). Magmatismo recorrente ocorreu também no Eoceno, formando estruturas de cones vulcânicos, segundo descreveu Mohriak em 1995.

Processos extensionais que atuaram durante a fase sin-rifte na Bacia de Campos se caracterizam por falhas normais sintéticas e antitéticas, formando gabrens e semigrabens preenchidos por rochas sedimentares continentais de origem lacustre, localmente ricas em matéria orgânica (Mohriak, 2004).

A evolução tectônica do Oceano Atlântico Sul condicionou a formação de todas as seis bacias sedimentares da margem continental do leste brasileiro: Sergipe-Alagoas, Complexo Bahia Sul, Espírito Santo, Pelotas, Santos e Campos; vale ressaltar que o grande volume de dados sísmicos adquiridos e o desenvolvimento de modelos conceituais sobre dinâmica geotérmica ajudaram em muito no conhecimento sobre o arcabouço estrutural, sobretudo em Campos, devido à importância econômica.

Vários autores procuraram descrever, ao longo dos anos, a estratigrafia da Bacia de Campos Schaller (1973) fez a primeira carta estratigráfica, ocorrendo posteriormente muitas atualizações, focando principalmente a litoestratigrafia. Winter *et al.* (2007). Fizeram uma análise com ênfase cronoestratigráfica da Bacia de Campos, utilizando dados de poços, sísmica e tabelas internas da Petrobras de correlações bioestratigráficas definindo para o registro sedimentar três supersequências, a saber, **Rifte**, **Pós-Rifte** e **Drifte**. Baseadas nesse estudo, as mesmas serão descritas a seguir nessa dissertação.

Essa descrição da estratigrafia da Bacia de Campos em sequências pode ser obsevada na figura 5, começando com uma sedimentação continental lacustre, representada pelos arenitos e conglomerados das Formações Itabapoana e Atafona, assim como folhelhos e carbonatos lacustres da Fm. Coqueiros há 125 Ma, passando a um ambiente restrito/lagunar das formações Itabapoana, Gargaú e Macabu até 112 Ma, quando surgem os evaporitos da Fm. Retiro. A Bacia de Campos começa então uma constante transgressão marinha, os ambientes sedimentares mudam de uma plataforma rasa da Fm. Goitacás, Grupo Macaé, para marinho

profundo do Grupo Campos até 65,5 Ma; a partir daí, na época Paleoceno, começa uma tendência marinha regressiva com ambiente deposicional variando de marinho profundo a talude com os diamictitos lamosos da Fm. Ubatuba (membro Geribá). Por último, sedimentação na plataforma continental, com areias e calcários pleistocênicos.

BR	BACIA DE CAMPOS WILSON RUBEM WINTER et al.														
		GEOCRO	ONO	LOGIA	EZA DA NTAÇÃO	AMBIENTE	DISCORD	ÂNCIAS		LITO	DESTRAT	IGRAFIA	ESPESS	SURA	SEDÜÊNCIAS
Ма	PERÍODO	ÉPOC/	Ą	IDADE	SEDIME	DEPOSICIONAL	DISCORD		GRUPO	FORM	IAÇÃO	MEMBRO	MAXIN (m)	WA	JEQUENTING
0— - 10— - 20—	NEÓGENO		EO NEO NEO EO	CELASIANO TANC LEANO MESSINIANO TORTONIANO SERRAVALIANO LANGHIANO BURDIGALIANO AQUITANIANO	0/	TAFORMA	PLEISTO MIOCENO S MIOCENO S MIOCENO I MIOCENO II	CENICA UPERIOR UPERIOR MEDIO		EMBORÊ		SÃO TOMÉ 1 GRUSSAÍ	4050	4 1620	N60 N50 N40 N30 N20 N10
- 30—		OLIGOCENC	NEO EO	CHATTIANO	REGRESSIV	LUDE / PLA	OLIGOCENO	NFERIOR			BATUBA	SSAÍ SIR	4050	132	E80 E74 E72
40	ÓGENO	CENO	MESO	PRIABONIANO BARTONIANO LUTETIANO	MARINHO	-UNDO / TA	EOCENO SI	MEDIO		lorê		GRUS	ncat	1701	E60 0-E20
50—	PALE	E O	EO	YPRESIANO		PROF	EOCENO IN	FERIOR	POS	EME		RIBÁ	3320	2940	E30
60—		PALEOCEN	NEO EO	SELANDIANO			PALEOCE	NO INF.	CAM			GE			БП-01 Настанование К130
70— - 80— - 90—		NEO	(SENONIANO)	CAMPANIANO SANTONIANO CONIACIANO TURONIANO	TRANSGRESSIVO	PROFUNDO	INTRA-MAAST	RICHTIANO PANIANA II PANIANA T			CARAPEBUS	TAMOIOS	2250	1500	K120 K120 -001X K90 -888 K110 -001X -988 -988 -988
- 100— -	RETÁCEO		(0)	CENOMANIANO	MARINHO	PLATAFORMA	INTRA-CENC	MANIANO	MACAÉ	GOITACÁS 2 2 8 ≣		81.11	500		K82- K84
110— - 120—	C	EO	(GALI)	APTIANO ALAGOAS	INENTAL	RASA RESTRITO / LAGUNAR	PRÉ-EVAP PRÉ-NEO-A	DRÍTICA LAGOAS	AGOA FEIA	RE CARRY	QUEIROS	~~~	2000	0	K38
- 130— -			COMIANO)	BARRE- MIANO HALTE- RIVIANO VALAN- GINIANO RI O	CONT	LACUSTRE	TOPO BA	SALTO	<u>د</u>	CABI	ÁFONA ÚNAS		200	0	K36 K34- K34
140— - 150— 542—	JURÁS- SICO	NEO PRÉ-CA	(N E		7			ЕМВА	S A M	EN	то				

Figura 5: Carta estratigráfica da Bacia de Campos segundo Winter et al., 2007.

2.3.1 Supersequência Rifte

Com idades do Cretáceo variando do Hauteriviano até o Eoaptiano, a Supersequência Rifte subdivide-se em três sequências deposicionais, **K20-K34**, **K36** e **K38**, essas duas últimas correspondem ao Grupo Lagoa Feia, antiga Formação Lagoa Feia, composto por outrora unidades, agora formações: Coqueiro, Retiro, Itabapoana, Atafona, Gargaú e Macabu, sendo as duas primeiras definidas por Rangel *et al.* (1994) e as outras seis definidas por Winter *et al.* (2007).

A Sequência **K20-K34**, correspondente à Formação Cabiúnas, é limitada no topo pelo contato com sedimentação da sequência **K36**, sendo tipicamente ígnea, caracteriza-se por derrames de basaltos e diabásios. Entretanto, localmente ocorrem entre os derrames alguns arenitos, siltitos e conglomerados.

A Sequência **K36**, limitada na base pelos basaltos da Formação Cabiúnas e no topo pela discordância pré-Jiquiá, é a porção inferior do Grupo Lagoa Feia, sendo correspondente às formações Itabapoana e Atafona, depositadas no Andar Barremiano. A Formação Itabapoana é composta por conglomerados, arenitos, siltitos e folhelhos avermelhados encontrados proximais a bordas de bacia e falha. Já a Formação Atafona possui arenitos, siltitos e folhelhos ricos em minerais de talco e estevensita.

Correspondendo à porção intermediária do Grupo Lagoa Feia, a Sequência **K38**, limitada na base pela discordância pré-Jiquiá, de 125,8 Ma e no topo pela discordância pré-Neo-Alagoas, de 121 Ma, compreende a Formação Itabapoana, com arenitos e conglomerados proximais de borda de bacia e falhas, e a Formação Coqueiros, com intercalações em camadas de folhelhos e carbonatos lacustres, com depósitos de conchas de bivalves, podendo chegar a 100 metros de espessura, denominados barras de coquinas. Essas últimas, por serem porosas, constituem importantes reservatórios produtores de petróleo, sendo facilmente identificáveis na sísmica, graças à intercalação da baixa densidade dos folhelhos com a alta densidade dos carbonatos, o que gera uma sismofácies característica, enfatizando as amplitudes negativas dos folhelhos.

2.3.2 Supersequência Pós-Rifte

Disposta sobre os sedimentos de origem lacustre de forma discordante, essa supersequência possui em sua base o Folhelho Alagoas. Já nas porções proximais com padrão progradacional, estão arenitos e conglomerados. Sua base, devido à superfície erosiva

exposta e o falhamento sindeposicional, apresenta espessura variável; porém sua porção superior apresenta um padrão retrogradacional, o que caracteriza uma subida do nível do mar.

As sequências **K46** e **K48** correspondem à parte superior do Grupo Lagoa Feia, sendo referentes às formações Itabapoana, Gargaú e Macabu, com idades de deposição do Aptiano médio a superior. Limita-se na base pela discordância pré-neo-Alagoas e no topo pela discordância que define o início de uma sequência evaporítica com 112 Ma. A Sequência K46 apresenta caráter progradacional onde a Fm. Itabapoana, com conglomerados e arenitos de borda de bacia progradando bacia adentro até o seu topo, em uma discordância de aproximadamente 115 Ma. A partir desta discordância, tem início a Sequência **K48**, de características retrogradacionais, com as formações Gargaú e Macabu caracterizadas por sedimentos carbonáticos, margas e arenitos. Nesta sequência, reflexões sísmicas apresentam-se com elevado mergulho *offshore* e são interpretadas comumente como *seaward dipping reflections* (SDR).

A Sequência **K50**, do Albiano Inferior, correspondente a evaporitos da Formação Retiro, pertencente ao Grupo Lagoa Feia, normalmente compostos de sais de anidrita, halita, carnalita e silvita. Limita-se na base por discordância de 112 Ma, entre esses evaporitos e a sequência sedimentar transicional, e no topo pelo Grupo Macaé. Essa sequência é de extrema importância na arquitetura da Bacia de Campos, pois a movimentação do sal veio a moldar o assoalho marinho, gerando elevações e caminhos preferenciais para areias depositadas no Cretáceo Superior (Winter *et al.*, 2007).

2.3.3 Supersequência Drifte

Segundo Winter (2007), essa supersequência é representada por sedimentos marinhos depositados sob assoalho subsidente gerado por dinâmica térmica e tectonismo adiastrófico.

Compreende as sequências depositadas no Período Cretáceo K60, K70, K82-K84, K86-K88, K90, K100-K110, K120 e K130, as sequências depositadas nas Épocas Paleoceno E10-E20, Eoceno inferior E30, Eoceno médio E40-E50, Eoceno médio (parte superior) e Eoceno superior E60, Oligoceno inferior (andar Priaboniano) E72, Oligoceno inferior (andar Rupeliano) E74, Oligoceno superior E80, Mioceno inferior N10, Mioceno inferior (parte superior) N20, Mioceno médio N30, Mioceno superior (andar Tortoniano) N40, Mioceno superior (andar Messiniano) N50 e, por fim, depositada na época Pleistoceno a sequência N60. A seguir serão discriminadas as principais características litológicas dessas sequências. Iniciando as sequências do Cretáceo, a **K60** compreende os leques aluviais, deltaicos e fandeltas da Formação Goitacás (porção proximal), sistema misto com lagunas calco-pelíticas e os folhelhos da Formação Quissamã (distal) do Grupo Macaé, tendo como o limite superior a superfície de inundação máxima chamada Marco Beta.

A Sequência **K70**, corresponde aos calcilutitos da Formação Outeiro (porção proximal e mediana), os conglomerados polimíticos e arenitos da Formação Goitacás (proximal) e Formação Namorado, com arenitos gerados e controlados pela tectônica salífera albiana.

A Sequência **K82-K84**, corresponde aos conglomerados e arenitos da Formação Goitacás (proximal), aos arenitos da Formação Namorado intercalados com sedimentos pelíticos da Fomação Imbetiba (distal), sendo estes a parte superior do Grupo Macaé.

Iniciando o Grupo Campos, a Sequência **K86-K88**, corresponde às formações Ubatuba (Membro Tamoios), Carapebus e Emborê (Membro São Tomé), caracterizadas por arenitos gerados a partir de fluxos hiperpicnais em ambiente batial superior.

A Sequência **K90**, corresponde às mesmas formações descritas na Sequência **K86-K88**, porém o ambiente deposicional passa de batial superior para batial médio onde o controle na deposição desses arenitos nessas regiões distais era exercido pelos evaporitos, sendo os arenitos depositados nas *mini-basins* localizadas entre os domos de sal. Também ocorrem, nessa sequência, rochas que evidenciam atividade vulcânica, extrusiva e intrusiva como basaltos e gabros.

No Mesocampaniano, as mesmas formações descritas na sequência **K86-K88**, aparecem na Sequência **K100-K110**, correspondendo a depósitos de fandelta com sedimentos arenosos avermelhados, típicos de ambiente plataformal raso, folhelhos em porções intermediárias e margas intercaladas com areias em porções mais distais.

A Sequência **K120**, corresponde às formações Ubatuba (Membro Tamoios), Carapebus e Emborê, caracterizadas por sedimentação siliciclástica fina originadas por pulsos hiperpicnais, de ambiente marinho profundo, e sedimentos avermelhados da Formação Emborê (Membro São Tomé) em sistema de fandelta.

Compreendendo sedimentos siliciclásticos finos com areias, originados por turbiditos depositados em ambiente marinho profundo das Formações Ubatuba (Membro Tamoios) e Carapebus, também arenitos plataformais da Formação Emborê (Membro São Tomé), a Sequência **K130** é um sistema de águas profundas rico em areias, compreendendo reservatórios permoporosos.

A Sequência **E10-E20** compreende depósitos de diamictitos lamosos depositados nos sopés de taludes, mostrando terminações em *onlap* contra a sua base, correspondente às formações Ubatuba (Membro Geribá), Carapebus e Emborê (Membro São Tomé).

A Sequência **E30** caracteriza-se por sedimentação de fandeltas e deltas da Formação Emborê (Membro São Tomé), depositados em calhas de controle tectônico correspondente à reativação de sistemas de falhas transcorrentes NW-SE.

A Sequência **E40-E50** compreende os primeiros carbonatos plataformais (calcarenitos e calcirruditos) da Formação Emborê (Membro Grussaí).

A Sequência **E60** é caracterizada por sedimentos de fandeltas e deltas da Formação Emborê (Membro São Tomé), em estilo progradacional, e também sedimentos carbonáticos do Membro Grussaí.

A sequência **E72** caracteriza-se por sedimentos arenosos, siltitos e folhelhos resultantes de turbiditos, pertencentes às formações Ubatuba (Membro Geribá), Carapebus e Emborê (Membros São Tomé e Grussaí). Este último (Membro Grussaí), próximo à quebra da plataforma, é composto por calcarenitos e calcirruditos de bancos algálicos.

A sequência **E74** é caracterizada por arenitos de águas profundas amalgamados com um calcilutito rico em nanoplancton, chamado de Marco Azul (figura 6), identificável em seções sísmicas e presente em toda a bacia, representando um importante evento de inundação. Tais rochas pertencem às formações Ubatuba (Membro Geribá), Carapebus e Emborê (Membro São Tomé e Grussaí).

A sequência **E80** compreende arenitos turbidíticos e de correntes de contorno e também siltitos e folhelhos pertencentes às formações Ubatuba (Membro Geribá), Carapebus e Emborê (Membros São Tomé e Siri, parte inferior). O Membro Siri é evidenciado em amostras de poços como um corpo de rochas carbonáticas originadas por recifes de algas vermelhas.

A sequência **N10** corresponde a arenitos resultantes de densos fluxos e correntes de contorno, siltitos e folhelhos pertencentes às formações Ubatuba (Membro Geribá), Carapebus e Emborê (Membros São Tomé e Siri, parte superior), esta última caracterizada por arenitos plataformais e também pela porção superior das rochas carbonáticas do Membro Siri.

A sequência **N20** é representada pelas formações Ubatuba (Membro Geribá), Carapebus, Emborê (Membros São Tomé e Grussaí) e Barreiras, com arenitos oriundos de correntes de turbidez, siltitos e folhelhos, além diamictitos e margas. Nas áreas proximais ocorrem, além dos arenitos plataformais da Fm. Emborê, sedimentos siliciclásticos ferruginosos da Fm. Barreiras. Nas áreas próximas à quebra da plataforma, ocorrem carbonatos do Membro Grussaí.

A sequência **N30** inclui as formações Ubatuba (Membro Geribá), Carapebus, Emborê (Membros São Tomé e Grussaí), compostas por arenitos, siltitos, folhelhos, diamictitos e margas. Seu limite superior é caracterizado por discordância representativa de uma queda eustática global, chamada de Marco Cinza (figura 6); este é identificado normalmente em linhas sísmicas.

Figura 6: Seção sísmica da Bacia de Campos identificando o Marco Cinza e Marco Azul (Peres, 1990).

A sequência **N40** corresponde às mesmas formações descritas na sequência **N30** e possui um pacote sedimentar com arenitos de fluxos turbidíticos, siltitos, folhelhos e argilitos, gerados a partir de uma queda eustática global, ocorrida há 11 Ma, conhecida como Marco Cinza, ocasionando uma remobilização grande de sedimentos, incluindo areias da plataforma, para águas profundas.

A sequência **N50** inicia seu pacote sedimentar sobre outra importante discordância, ocorrida há 5,8 Ma, representando outra queda eustática global. Corresponde aos arenitos resultantes de fluxos de turbidez, siltitos, folhelhos, argilitos e *debris flow* com brechas de

folhelhos e diamictitos das formações Ubatuba (Membro Geribá), Carapebus, Emborê (Membros São Tomé e Grussaí).

A sequência **N60**, mais recente, corresponde a sedimentos do Pleistoceno das formações Ubatuba (Membro Geribá), Carapebus, Emborê (Membros São Tomé e Grussaí), depositados sobre a discordância de 1,6 Ma relativa à outra queda eustática global. A faciologia dominante na porção de plataforma está representada por areias e, próximo à quebra de plataforma, os corpos de calcário (figura 7). Apenas na região de Cabo Frio (RJ) ocorrem lamas depositadas na plataforma. Na porção do talude predominam lamas, lamitos de denudação e corais de águas profundas (cf. Winter *et al.*, 2007).

Figura 7: Sedimentos pleistocênicos na plataforma rasa da Bacia de Campos e posicionamento em vermelho das linhas reprocessadas nesta dissertação (Viana *et al.*, 1998).

3 METODOLOGIA

3.1 Dados sísmicos

Nesta dissertação, serão alvo de estudos três linhas sísmicas 2D marítimas, (3A, 4A e 9), levantadas na área plataformal sul da Bacia de Campos. Foram usados também dados públicos sobre a batimetria da plataforma. Estes dados são oriundos do projeto FINEP/CTPETRO/UFRJ nº 65.00.0405.00 em banco de dados do LAGESED, Laboratório de Geologia Sedimentar do Departamento de Geologia da UFRJ, e descritos nos relatórios de campo para cada linha sísmica.

Todas as seções em estudo estão migradas em tempo e foram gravadas em disco no formato SEG-Y, possuindo ainda suas versões originais também em formato original de campo, SEG-D. Estes últimos foram utilizados nas etapas do reprocessamento, como tentativa de melhorar a qualidade em comparação com os dados migrados, uma vez que apresentam multiplicidade de sinal e muitos ruídos para profundidades em tempo maiores que 200 ms.

Para o reprocessamento dos dados de campo e análise da batimetria, foi utilizado o programa ProMAX da Landmark em sua versão mais recente, o SeisSpace/R5000. Depois houve carregamento e posterior interpretação dos dados sísmicos *Stack* e *Mig* no *software SeisVision/Geographics*, também da *Landmark*, com transcrição para o formato interno 2ds.

O formato digital SEG-Y é o formato de que os intérpretes precisam para carregar as linhas sísmicas nos *softwares* de interpretação. É composto por três sub-formatos: Ebcdic, *Binary header* e *Trace header*.

O Ebcdic é composto por 3200 bytes dispostos em 40 linhas e 80 colunas. Neste são escritas informações sobre aquisição, identificação do dado digital e área de estudo, posicionamento cartográfico e processamento executado.

O *Binary header* possui 400 bytes e contém informações digitais sobre o dado em si, como número de traços sísmicos, razão de amostragem, número de amostras e polaridade utilizada.

Já o sub-formato *Trace header* contém 240 bytes por traço e possui informações que identificam, qualificam e posicionam o traço sísmico como unidade básica do dado digital.

3.2 Sísmica de reflexão

3.2.1 Fundamentos

Na análise sísmica observa-se o fenômeno de propagação de ondas em um meio através de dois processos ondulatórios independentes, definidos pelas ondas primárias (\mathbf{P}) e pelas ondas secundárias (\mathbf{S}). Caracterizadas pelo aspecto dinâmico, as ondas \mathbf{P} são compressionais e as ondas \mathbf{S} são definidas como cisalhantes. Estas últimas não se propagam em líquidos.

As ondas possuem um comportamento senoidal nos domínios de espaço e tempo (Fig. 8 e 9), configurando os seguintes elementos: amplitude, comprimento de onda, período, frequência e velocidade.

Figuras 8 e 9: Ondas no domínio espaço e no domínio tempo, respectivamente, com seus parâmetros inerentes.

As ondas **P**, ou primárias, possuem velocidade de propagação maior. São ondas longitudinais, fazendo com que as rochas vibrem em paralelo à direção de propagação da onda, sendo observada a alternância de compressão e distensão, impondo aos corpos sólidos elásticos alterações de volume sem que haja, no entanto, alteração de forma.

Alguns elementos descritivos são parâmetros para o entendimento do movimento ondulatório, dentre estes se destacam:

- *Amplitude* – distância entre a posição de repouso de um elemento de matéria e sua posição com deslocamento máximo.

 Velocidade da onda – a velocidade de propagação do pulso e não a de deslocamento das partículas.

Fase - é um termo que se refere a uma determinada posição em um ciclo, por exemplo,
o pico de uma onda em forma de seno, que ocorre repetidas vezes em um determinado ponto e
pode ser tomado como referência para a observação da propagação da onda.

- Comprimento de onda – a distância entre dois pontos de mesma fase em ciclos adjacentes.

Frequência – número de ciclos que ocorrem por unidade de tempo em uma posição determinada, medida em Hertz (Hz).

- Período – tempo necessário para completar-se um ciclo. É o inverso da frequência.

- *Freqüência angular* – expressão da freqüência em termos da trajetória que seria percorrida sobre uma circunferência após cada unidade de tempo, a circunferência representando um ciclo completo. Por exemplo, no caso de uma oscilação com freqüência de 1,5 Hz, ou um ciclo completo e meio a cada segundo, a frequência angular seria de 2π (um ciclo completo) mais π (meio ciclo), portanto 3π .

Assim: Freqüência angular = 2π x freqüência

Quando uma onda compressional atinge um limite entre dois meios com velocidades diferentes, ocorrem dois fenômenos:

- Reflexão – parte da onda incidente é refletida no meio superior. O ângulo entre o raio incidente e uma normal é igual ao ângulo entre o raio da onda refletida e essa normal.

 Refração – parte da energia é transmitida para o meio inferior. Aplica-se o princípio de Huygens, pelo qual se pode determinar uma segunda posição da frente de onda se considerar que cada ponto da frente anterior se comporta como uma nova fonte. Sendo assim, o raio muda de direção com a mudança de velocidade.

Dessa mudança de direção trata a Lei de Snell, que relaciona os ângulos de incidência e refração, medidos em relação a uma normal ao plano, velocidades da onda, comprimentos de onda e os índices de refração:

$$\frac{sen\hat{i}}{sen\hat{r}} = \frac{V_I}{V_R} = \frac{\lambda_I}{\lambda_R} = \frac{N_R}{N_I}$$

Onde: i =ângulo de incidência, r =ângulo de refração, $VI e \lambda I =$ velocidade e comprimento de onda da onda incidente, $VR e \lambda R =$ velocidade e comprimento de onda da onda refratada, NI e NR =índice de refração do meio de incidência e índice de refração do meio de refração.

3.2.2 Aquisição

Na aquisição sísmica são observados os princípios da reflexão de ondas utilizados em ótica geométrica; nesta é utilizada uma fonte de energia compressional e um arranjo de receptores em superfície. Se a superfície for terrestre, a fonte será um emissor de ondas elásticas e o receptor é chamado de geofone, porém se essa aquisição for executada no mar, o modelo de fonte mais utilizado é o canhão de ar comprimido chamado de *airgun*, enquanto os receptores receberão o nome de hidrofones. Tais arranjos são executados de acordo com uma geometria específica, onde são observados os posicionamentos de fonte e receptores, direção de aquisição e, sobretudo georreferenciamento (figura 10).

Nos sistemas terrestres, os receptores (geofones) são baseados na oscilação vertical de uma carga elétrica em um campo magnético, isso gera correntes proporcionais à velocidade de deslocamento. Sua sensibilidade vai de 2 mm a 10 cm.

Atualmente existem três tipos de fontes descriminadas a seguir:

 Fontes explosivas – Cargas explosivas de 0,05 a 100 kg (geralmente TNT) colocados em furos de 10 a 15 cm de diâmetro, abaixo da camada de alteração intempérica superficial.
Sistema muito usado, porém como o inconveniente de ter baixa mobilidade e custo elevado.

Fontes superficiais impulsivas – Queda de grandes massas e sistema de explosão controlada em câmara com parede móvel sobre o solo Dinoseis®. Grande mobilidade e baixo custo, porém com os problemas resultantes da interferência da camada intempérica – geração de ondas superficiais com o predomínio de ondas S e de baixas freqüências.

 Sistema Vibroseis® - Vibração controlada de caminhões, onde a energia total emitida é proporcional ao tempo de emissão, pois é calculada como a soma das respostas da energia de cada compressão. É o método mais usado em exploração terrestre.

Nos sistemas marinhos, os receptores (hidrofones) são dispositivos de cerâmica, piezos elétricos que ficam dentro de um tubo plástico flexível contendo querosene ou silicone líquido, sendo esse fluido com a mesma impedância acústica da água do mar. Quanto às fontes, existem também três tipos, discriminadas a seguir:

 - Aquapulse – Mistura de propano-oxigênio, detonada em uma câmara cilíndrica de borracha, suportada por uma malha metálica, essa reduz o efeito bolha, pois o retorno à forma inicial é relativamente lento.

 - Airgun – Libera rapidamente ar comprimido na água, gerando uma bolha e uma onda sísmica. Para minimizar o efeito da inércia da bolha (que normalmente continua pulsando após o evento inicial), utilizam-se câmaras de diferentes volumes detonadas simultaneamente, gerando assim períodos diferentes para cada volume o que reduz o efeito de interferência destrutiva.

- *Watergun* – A liberação de ar comprimido empurra uma coluna de água para fora da câmara, isto gera vazios, pela inércia, que são preenchidos por um colapso brusco.

A tabela 1, abaixo, sintetiza os tipos de fontes e receptores utilizados na aquisição sísmica convencional e de alta resolução.

Tipo de aquisição	Fontes	Receptores
Terrestre	Carga explosiva	Geofone
	Dinoseis®	Geofone
	Vibroseis®	Geofone
Marítima	Aquapulse	Hidrofone
	Airgun	Hidrofone
	Watergun	Hidrofone

Tabela 1: Tipos de fontes e receptores utilizados na aquisição sísmica.

Figura 10: Parâmetros de geometria analisados em um levantamento marítimo.

Dentre os muitos arranjos possíveis para uma aquisição sísmica o mais comumente utilizado é o CMP (common mid point) ponto médio comum. Este consiste em amostrar
diversas vezes um ponto em subsuperfície CDP (*common depht point*) com diferentes *offsets* propiciando um melhor sinal com relação às ondas refletidas (figura 11). O *offset* é determinado como distância entre a fonte e o canal receptor. Nas linhas em estudo este foi o método utilizado para aquisição marítima na plataforma da Bacia de Campos.

Figura 11: Técnica CMP, amostrando um ponto em subsuperfície, várias vezes gerando um sismograma (*gather*) de traços sísmicos.

3.2.3 Processamento

O processamento dos dados sísmicos tem como objetivo produzir seções sísmicas com imagens mais próximas da realidade estratigráfica existente em subsuperfície, possibilitando o mapeamento de estruturas geológicas e parâmetros que caracterizem sua litologia e propriedades petrofísicas. São utilizados sofisticados algoritmos matemático-computacionais no processamento dos dados sísmicos. Esses cálculos combinados, geram fluxos comumente usados por várias empresas e projetos, como pode ser visto na figura 12 abaixo.

No final do processamento, o objetivo será criar um dado sísmico *poststack* pronto para ser analisado e interpretado por um geólogo, seja ele no estilo *Stack*, migrado em tempo ou migrado em profundidade.

No reprocessamento executado nesta dissertação, algumas importantes etapas, dentre as descritas na figura 12, foram utilizadas; seus métodos e parâmetros estão descritos no capítulo 5, discriminando o principal objetivo desse trabalho.

Figura 12: Esquema de fluxos de processamento usados em sísmica.

3.2.4 Sismoestratigrafia

Também chamada de estratigrafia sísmica, a sismoestratigrafia é o estudo de sucessões estratigráficas através dos métodos sísmicos de prospecção. O surgimento da sismoestratigrafia ocorreu com o avanço tecnológico computacional, o que possibilitou o processamento de um maior volume de dados sísmicos; somando-se a isso, posteriormente, com inovações na computação gráfica houve melhorias na qualidade das imagens nas seções sísmicas, o que facilitou a visualização e análise estratigráfica dos refletores sísmicos.

Muitos são os termos e conceitos utilizados na sismoestratigrafia, tendo sido alguns modificados ao longo do tempo. No Memoir #26 da AAPG (Payton, 1977), alguns desses termos foram apresentados à comunidade científica. Dentre os termos mais comuns, vale destacar: padrões de terminações de reflexões, discordância, sismossequência e sismofácies.

3.2.4.1 Discordância

Mitchum *et al.*, (1977b) consideram discordância como uma superfície de erosão ou não deposição que separa estratos mais novos dos mais antigos e representa um hiato significante. Tal definição foi posteriormente modificada por Van Wagoner *et al.*, (1988), que descreve uma discordância como uma superfície que separa estratos mais novos de estratos mais

antigos, tendo entre ambos, evidência de exposição subaérea ou de erosão subaérea, com significativo hiato associado. As discordâncias podem ser classificadas e tipificadas de acordo com a maneira que o estrato termina em contato com o limite discordante de uma unidade ou sequência deposicional.

3.2.4.2 Padrões de terminações de reflexões sísmicas

Toda análise sismoestratigráfica pode ser feita com base nas relações de terminações das reflexões. Dentre essas, as mais utilizadas são: *lapout, onlap, downlap, toplap*, truncamento e concordância ou conformidade, mais comumente utilizado. Esses padrões podem ser observados na Figura 13.

– Lapout – ocorre quando os refletores sísmicos terminam lateralmente contra seu limite deposicional de origem. Quando ocorre contra um limite inferior de uma unidade sísmica, é chamado de *baselap* e quando sua terminação é contra o limite superior, recebe o nome de *toplap*.

 - Onlap – quando uma reflexão ou estrato inicialmente horizontal ou de baixo ângulo termina contra uma superfície sísmica inclinada.

Downlap – quando uma reflexão ou estrato inicialmente inclinado termina em contato com um limite inferior de baixo ângulo ou horizontal.

Toplap – quando uma reflexão ou estrato inicialmente inclinado termina em contato com um limite superior de baixo ângulo ou horizontal.

 Truncamento – pode ser erosivo, aparente ou estrutural; neste as reflexões terminam lateralmente por terem sido cortadas no seu limitante deposicional original.

– Conformidade – segundo Severiano Ribeiro *et al.*(2001), uma conformidade é descrita quando as reflexões/estratos de duas unidades sísmicas ou sequências adjacentes estão em paralelo com a superfície que as delimitam, podendo ocorrer to topo ou na base de uma unidade sísmica.

3.2.4.3 Sismossequência

É definida por Vail *et al.* (1991), como uma sequência deposicional identificada em uma seção sísmica sendo esta limitada na base e no topo por uma discordância, sendo estas determinadas por diferentes padrões de terminações de reflexões sísmicas.

3.2.4.4 Sismofácies

Segundo Brown Jr. e Fisher (1980), a definição que melhor caracteriza as fácies sísmicas é a que define como unidade tridimensional, espacialmente definida, constituída por refletores sísmicos cujos parâmetros inerentes diferem das fácies adjacentes. Já Severiano Ribeiro (2001), diz que é o registro nos refletores sísmicos dos fatores geológicos que os geraram, tais como tipo litológico, estratificação e feições deposicionais.

O objetivo de uma análise de sismofácies, segundo Mitchum Jr. *et al.*,(1977), é reconhecer os padrões dos refletores sísmicos e suas inter-relações dentro das unidades sísmicas ou sequências, interpretando seus significados geológicos. O quadro 1 mostra os parâmetros de fácies sísmica e suas possíveis interpretações geológicas.

Parâmetros de fácies sísmicas	Interpretação geológica
Configuração das reflexões	 padrão de estratificação processo deposicional erosão e paleotopografia contato entre fluidos
Continuidade das reflexões	 continuidade dos estratos processo deposicional
Amplitude das reflexões	• contraste velocidade / densidade • espaçamento dos estratos • conteúdo fluido
Freqüência das reflexões	• espessura dos estratos • conteúdo fluido
Velocidade intervalar	• estimativa do tipo litológico • estimativa da porosidade • conteúdo fluido
Forma externa e associação espacial das fácies sísmicas	• ambiente deposicional • fonte sedimentar • sítio geológico

Quadro 1: Parâmetros vistos em sismofácies X interpretação geológica segundo Mitchum (1977).

Alguns padrões de configuração de fácies sísmicas, dentro dos limites, ou discordâncias, são comuns e usualmente utilizados na identificação de sismofácies. Estes podem ser vistos na figura 14.

Figura 14: Padrões internos de configurações em sismofácies segundo Mitchum (1977).

Por último, vale ressaltar as fácies de preenchimento correspondentes a depressões no relevo, que servem como escoadores de fluxos sedimentares ou líquidos. De acordo com a natureza do substrato e a energia de fluxo, podem apresentar diversas formas em planta, o que reflete internamente em sua configuração estratigráfica. Quando observados em seções sísmicas, seus refletores apresentam configurações internas de preenchimento típicas, como pode ser visto na figura 15, que discrimina cinco tipos de geometrias de preenchimento.

Figura 15: Seis tipos de geometrias de preenchimento mais comuns, identificáveis na sísmica segundo Mitchum (1977).

4 AQUISIÇÃO DAS LINHAS SÍSMICAS

4.1 Aquisição dos dados

A aquisição das linhas sísmicas foi feita pela empresa Georadar, através do Projeto *Canyon* (Figura 16). Foi executado na Bacia de Campos em uma área limitada pelos paralelos $21^{\circ} 17' - 22^{\circ} 58'S$ e meridianos $40^{\circ} 05' - 41^{\circ} 25'E$. Parte da área está em zona petrolífera em exploração pela Petrobrás S.A.. Dez linhas do Projeto Canyon (1 a 10) estão sobre plataforma rasa e a Linha 11, isolada, mapeando o talude. A profundidade no levantamento na área rasa, exibida pelo sonar da embarcação variou entre 8 e 60 m.

Este levantamento sísmico teve como proposta a obtenção de dados de alta resolução. As linhas 3A, 4A e 9 são parte das 10 linhas que visaram o mapeamento de estruturas sobre a plataforma.

A avaliação da qualidade dos dados, de forma sistemática ao longo das linhas, esteve comprometida pela impossibilidade de *plotagem* de sismogramas durante a aquisição. As informações correntes foram obtidas pela visualização em tela da parte superior dos registros (1ª quebra) e nos sismogramas finais das linhas.

Os problemas mais relevantes ficaram por conta do sistema de posicionamento e solenóides dos "*airguns*".

Figura 16: Linhas do Projeto *Canyon* sobre a plataforma, representando o levantamento sísmico marítimo executado pela empresa Georadar.

4.1.1 Equipamentos

O levantamento das linhas do Projeto *Canyon* foi conduzido com a utilização do navio D'DIANA, da Delba Marítima Navegação SA. É um rebocador de 43 m de comprimento e 216 ton de porte bruto, equipado com dois propulsores de 750 BHP, que chega a atingir 9 nós (16 km/h) de velocidade. Esta embarcação já era adaptada para lançamento de cabos submarinos e se mostrou adequada ao trabalho.

O *hardware* do sistema de navegação e posicionamento primário utilizado foi o já existente no navio, implementando-se as correções do sinal de GPS, a partir de sinais transmitidos pela FULGRO (STARFIX) e pela Marinha Brasileira. As duas primeiras linhas foram levantadas com as correções do receptor STARFIX e as demais apoiadas pela correção transmitida pela Marinha. O sistema se mostra adequado à navegação, mas não permite posicionamentos de precisão compatíveis com a natureza do levantamento. Como elemento de orientação secundária, a embarcação foi apoiada por um giroscópio Robertson mod. RGC 10 (Figura 17), cuja informação instantânea de rumo, também é gravada a cada registro.

Figura 17: Foto do Giroscópio Robertson modelo RGC 10 usado no apoio a orientação.

O *software* utilizado para navegação é o PRECISELAY da SIMETRY (Figura 18), que proporciona, através de um programa específico, o display de navegação, a posição e o comando de disparo do ponto de tiro (SP).

Figura 18 – Tela do sistema de navegação PRECISELAY.

Uma vez atingida a posição do tiro, o programa emite um pulso para o controle dos canhões, deflagrando o processo de registro. Feita a detonação e gravação dos dados, o sismógrafo envia ao sistema de navegação os elementos que permitem gerar um arquivo de texto com as seguintes informações: Coordenadas X, Y, rumo (do giroscópio), hora (hh:mm:ss), dia (dd/mm/aa), nome da linha, número do SP e o FFID (número do registro). A resolução temporal deste sistema é um pouco maior que um segundo. A posição do tiro é calculada a partir das coordenadas do tiro anterior, não havendo outros processos de ajuste do intervalo de tiro. Os elementos descritos a seguir foram os que mais influenciaram na navegação e qualidade da informação de posicionamento:

- A constância e qualidade da correção do sinal de GPS, que implica deficiência na informação;

- O tempo de processamento dos dados de coordenadas, que afeta para mais ou para menos (normalmente para mais) o instante da emissão do pulso;

- A variação instantânea de velocidade do barco em situações de mar mais agitado;

- A ausência de um programa de compensação, que permitisse maior definição das coordenadas absolutas do ponto de disparo.

Neste levantamento, os resultados apresentaram algumas distorções e foi utilizada como intervalo médio de tiro a distância de 12,5 m. Em conseqüência, ocorreram distorções na composição da multiplicidade CDP, agindo como filtro cortando as altas frequências.

O equipamento de fonte usado nessa aquisição constou de dois *sleeve guns* com volumes individuais de 10 ft, posicionados em um suporte metálico, sustentado por duas bóias (Figura 19).

Figura 19: Foto do arranjo dos canhões de ar comprimido.

O sistema é simples e prático, embora não forneça elementos para cancelamento do efeito bolha. A pressão de trabalho é de 140 bar (~1800 psi), fornecida por um compressor de quatro estágios com capacidade de fornecer 32 cfm (906 l/min) à pressão de 190 bar. O compressor é acionado por um motor diesel Deutz 6 cc refrigerado a ar, acoplado por correias. O sistema se mostrou robusto e prático, pois o conjunto está montado sobre um chassi,

permitindo grande mobilidade. Os problemas que se verificaram com este conjunto foram de natureza elétrica e nas correias, fáceis de corrigir e podem ser evitados com a adequada manutenção preventiva.

Os canhões fabricados pela TEXAS INSTRUMENTS são leves e possuem poucas partes móveis. A disponibilidade de maior quantidade de canhões no arranjo permitiria uma maior flexibilidade (*drop out*), desligando o canhão defeituoso, permitindo que a operação prosseguisse até o final da linha, para então repará-lo. A energia propiciada pelo conjunto se mostrou suficiente para imagear as superfícies refletoras e concorrer com a intensidade do ruído ambiental, até o limite de aquisição de 2000 ms.

O cabo sísmico submarino (streamer) é analógico, composto por cinco seções principais:

– Lead-in (tow) – composto por um cabo condutor analógico com os pares suficientes para 48 canais (+ reservas), com elementos tratores e de proteção interna em aço, que conecta o *streamer* ao carretel e ao *deck cable*.

- 1ª Seção elástica - onde as tensões são absorvidas por cordas de nylon internas.

Seções ativas – são duas seções, cada uma com disponibilidade de 16 canais ativos.
 Os hidrofones estão em grupo de 10 elementos espaçados em 0,625 m, compondo um arranjo com 5,625 m de comprimento, gerando um intervalo de hidrofones de 6,25 m.

- 2^a Seção elástica e, *Tailboil*. – onde se adotou uma bóia plástica, presa a uma corda de nylon.

5 REPROCESSAMENTO DAS LINHAS SÍSMICAS

5.1 Geometria

Nessa etapa, segundo informações contidas nos relatórios do observador (RO) de cada linha procurou-se alimentar os registros de informação do traço (*Trace Header*) de forma a recompor a geometria original da aquisição sísmica. Dentre os parâmetros importantes, estão a relação entre o registro (FFID) e o tiro (SP), relação entre as estações de tiro e as estações receptoras, as coordenadas do tiro X e Y, as coordenadas do receptor X e Y, as elevações médias em batimetria e o *datum* com sistema de projeção utilizada. Os intervalos de tiro foram de 12,5 metros, com razão de amostragem de 0,25 ms. Por ser uma aquisição marítima, a geometria de aquisição foi executada para um só lado da fonte, sendo classificada assim como *Endon*, possuindo 24 canais de receptores, com intervalo de grupo de 6,25 metros, segundo o arranjo da figura 20.

Figura 20: Parâmetros da geometria comuns nas três linhas sísmicas.

Nos anexos A, B e C estão as informações dos Relatórios de Observador, com os parâmetros de instrumentação, medidas e registro referentes às linhas 3A, 4A e 9, respectivamente, porém nas tabelas abaixo podemos ver algumas informações de produção dessas linhas. Vale ressaltar que a projeção utilizada na aquisição foi a UTM e que o *datum* referenciado foi o Aratu Campos, meridiano central 39°.

	PREVISÃO	INÍCIO		FII	REALIZADO	
LINHA	(km)	Х	Y	Х	Y	(km)
3A	60,268	251930,77	7485642,87	310134,18	7501282,50	60,268
4 A	66,373	315337,45	7493968,09	251883,91	7474498,89	66,373
9	107,077	273315,18	7428603,60	271709,20	7536003,93	107,412
TOTAL	233,718					234,054

Tabela 2: Posicionamento dos registros iniciais e finais das linhas sísmicas com produtividade em km realizada em aquisição.

O *software* ProMAX/SeisSpace trabalha com linhas de fluxos onde se parametrizam as informações de entrada, para que possam ser computados os dados com algorítmo específicos a cada função. As figuras 21 e 22, mostram respectivamente as ferramentas *Auto Marine 2d Geometry* e *Geometry Setup*, com os padrões geométricos comuns às três linhas e também geodésicos, particulares de cada uma, em acordo com a tabela 2 e com o Relatório do Observador (RO).

+0000		
.0000		
0000		
j5.2500		
75		
i.0000		
.5000		
1930,7656		
85643,0000		

Figura 21: Parâmetros de entrada da ferramenta Auto Marine 2D Geometry.

🚟 Geometry Setup			
Assign Midpoints Method (Required)			
\diamondsuit Existing index number mappings in the TRC	12		
 Matching pattern number in the SIN and PAT spr Matching line and station numbers in the SIN a 	readsheets nd PHT spreadsheets		
Station Intervals (Generally Required; Please see	Doc.)		
Nominal Receiver Station Interval:	j6₊2500		
Nominal Source Station Interval:	12.5000		
Nominal Crossline Separation:	Ď.0000		
Nominal Sail Line Azimuth:	75.0000		
Nominal Source Depth:	1.0000		
Nominal Receiver Depth:	2.5000		
Units (Required)			
🔷 Meters 💠 Feet			
Co-ordinate origin (Optional)			
X0: Subtract this value from all X coordinates:	Ď.0000		
Y0: Subtract this value from all Y coordinates: 0.0000			
Font Assignment			
Ok	Cancel		

Figura 22: Ferramenta *Geometry Setup*, com parâmetros geométricos e o diferencial do azimute para cada linha.

Outra etapa importante, comum às três linhas, fornecida como parâmetro para se computar a geometria no programa, é o padrão de arranjo de tiro junto com a disposição dos receptores ao longo do cabo. A figura 23 mostra a ferramenta *Pattern* configurando as informações de *Offset*, ou seja, distâncias entre a fonte e os receptores, subtraindo-se porém a distância entre a fonte e a antena de recepção do GPS.

Marel Dlook	Min Chan	May /Cap. Chap	Chan Inc	Con Dattonn	Con Int	V Offert	V Offerst
HAFK BIOCK	riin unan	nax/Gap Chan	unan Inc	Src Pattern	orp Inc	A UTTSEC	TUFFSet
1	1	24	1		6,2	109,7	0,0
2		-		1		59,7	0.0
3			1			0.0	0.0
4				1		0.0	0.0
5						0.0	0.0
6						0.0	0.0
7						0.0	0.0
8	1					0.0	0.0
9						0.0	0.0
10	1		35	6 1		0.0	0.0
11			<u>i</u>	1		0.0	0.0
12						0.0	0.0
13	1	1				0.0	0,0
14						0.0	0.0
15						0.0	0.0
16						0.0	0.0
17					-	0.0	0.0

Figura 23: Ferramenta Pattern computando os valores de Offset.

A próxima etapa na montagem da geometria é a criação da tabela de parâmetros do tiro (source), na qual são escritos os valores de tiro em associação com os valores de cada registro ou FFID, assim como lâmina d'água, número de canais por registro, profundidade do cabo e profundidade da fonte (figura 24). Depois de preenchida a tabela *Source*, usa-se a ferramenta *2D Marine Binning* (figura 25), que tem por função computar os valores preenchidos na tabela *Source* com os valores de padrões geométricos por *Offset*, definidos na ferramenta *Pattern*. Quando executada essa operação, são criados digitalmente os primeiros CDPs para cada linha trabalhada.

Mark Block	Source	Station	v	v	H20 Benth	See Beeth	FEID	Stown Ormth	Time	Date	Sno Pattern	Shot Fold*	Statio
4	Julice	Juacion	051070.0	7405047.0	74.0	1 0	0		TINC	Date	JIC TACCETT	04	Julie
1	2	2	251930.8	7485645.0	51.0	1.0	2	255.0	-	-	1	24	0.0
2	5	5	251942.8	7485646.0	51,0	1,0	3	255.0		_	1	24	0,0
3	4	4	251954,9	7485649,5	31,0	1,0	4	255.0			1	24	0,0
4	5	5	251967.0	7485652.5	31.0	1,0	5	255.0	-	_	1	24	0,0
5	6	6	251979.1	7485656.0	31.0	1.0	6	255.0			1	24	0.0
6	7	7	251991.1	7485659.0	31.0	1.0	7	255.0			1	24	0.0
7	8	8	252003.2	7485662.5	31.0	1.0	8	255.0			1	24	0,0
8	9	9	252015.3	7485665.5	31.0	1,0	9	255.0			1	24	0,0
9	10	10	252027.4	7485669.0	31,0	1,0	10	255.0			1	24	0,0
10	11	11	252039.4	7485672.0	31.0	1.0	11	255.0			1	24	0.0
11	12	12	252051.5	7485675.5	31.0	1,0	12	255.0		-	1 1	24	0.0
12	13	13	252063.6	7485678.5	31.0	1.0	13	255.0			1	24	0.0
13	14	14	252075.7	7485682.0	31.0	1.0	14	255.0	-		1	24	0,0
14	15	15	252087.7	7485685.0	31.0	1.0	15	255.0			1	24	0,0
15	16	16	252099.8	7485688.5	31,0	1,0	16	255.0			1	24	0,0
16	17	17	252111.9	7485691,5	31.0	1,0	17	255.0			1	24	0,0
17	18	18	252124.0	7485695.0	31.0	1,0	18	255.0		12	1	24	0,0

Figura 24: Tabela Source, com valores associados a cada registro de campo.

🚰 2D Marine B	inning	
Binning Sequence		
 Assign midpoin Binning 	ts by: Matching pattern number in th	ne SIN and PAT spreadsheets
Method :	Midpoints, user defined OFB	parameters 🗆
🛛 Finalize datab	ase	
Source Station Ti	e to CDP Number:	2
CDP Number Tie to	Source Station:	50
Distance Between	CDPs:	j6.25
Offset Bin Center	Increment:	25
Minimum Offset Bi	n Center:	3.125
Maximum Offset Bi	n Center:	140,625
Receiver Bin Widt	n _é	J. 125
CDP Numbers in CDP Numbers de Receiver Numbe Receiver Numbe	crease in shooting direction: crease in shooting direction: rs increase in shooting direction; rs decrease in shooting direction;	
Ok	Cancel	Help

Figura 25: Ferramenta 2D Marine Binning, que tem por finalidade criar digitalmente os CDPs.

Depois de computados os parâmetros geométricos e os CDPs para planilhas de geometria em cada linha, deve-se fazer a associação com o dado digital real de campo, ou seja, a linha sísmica 2D pré-stack, que após a carga no *software* ProMAX/SeisSpace (Apêndice B), torna-se um dataset com formato própio chamado de Geom. Essa associação é executada através da ferramenta *Inline Geometry Header Load*, de acordo com o segundo fluxo, parametrizado e descrito no Anexo B desta dissertação. Definiu-se para cada linha a velocidade do som na água marinha como 1480 m/s.

5.2 Ruídos

A análise de ruídos foi executada de maneira não convencional nas três linhas sísmicas, uma vez que possuem uma razão de amostragem de 0,25 ms, sendo difícil a identificação visual de ruídos de alta freqüência e a presença de *spikes* de baixa frequência (Figura 26). Por isso, foi proposta uma análise espectral onde se computam e mostram estimativas espectrais através da ferramenta *Interactive Spectral Analysis* que usa os algoritmos da Tranformada de Fourier para calcular o espectro da média de energia por traço sísmico (Figura 27). Após analisadas as freqüências, utilizou-se no fluxo parametrizado no Anexo F, filtros de freqüência trapezoidais *Ormsby Bandpass Filter* (Figura 28), com faixas de atenuação em baixa de 50 a 100 Hz, faixas de qualidade em freqüências de 100 a 200 Hz e atenuação em alta de 200 a 250 Hz.

Figura 26: Sismograma sintético do dado pre-stack com ruídos de baixa frequência.

Figura 27: Ferramenta *Interactive Spectral Analysis*, onde podem ser identificados grupos de freqüência.

🔲 *03-Ruidos.71 : Bandpass Filter Par	ameters 🗆 🛛 🗙
Bandpass Filter	
TYPE of filter	Single Filter
Type of filter specification	Ormsby bandpass
PHASE of filter	Zero
Domain for filter application	Frequency
Percent zero padding for FFT's	25.0
Apply a notch filter?	🔾 Yes 🔘 No
Ormsby filter frequency values	50-100-200-250
Re-apply trace mute after filter?	🖲 Yes 🔾 No

Figura 28: Ferramenta *Bandpass Filter* aplicando filtros *Ormsby* trapezoidais nos intervalos de freqüência selecionados.

Os filtros e parâmetros de análise de ruídos foram os mesmos utilizados nas linhas 3A, 4A e 9, uma vez que apresentavam espectros de frequências parecidos, talvez por estarem sujeitos aos mesmos ruídos ambientais.

5.3 Deconvolução

Nesta etapa foi feita a deconvolução do dado sísmico *pre-stack*, através da ferramenta *Spiking/Predictive Deconvolution* (figura 29), que aplica operadores de deconvolução preditiva usando o algoritmo de mínimos quadrados Wiener-Levinson em janelas de tempo desenhadas sobre o sismograma *pre-stack*. O objetivo da deconvolução é estimar os efeitos indesejáveis, como reverberações, atenuações e múltiplas (horizontes fantasmas que se repetem em tempo), gerados na aquisição do dado sísmico pelos próprios instrumentos, geofones e a resposta da onda direta no assoalho oceânico, quando os eventos de convolução criam o dado sísmico com uma onda suave (*Wavelet*), em função senoidal por traço.

Após o uso da ferramenta de deconvolução, foi utilizado o filtro de frequência *Ormsby Band Pass*. Os parâmetros utilizados nessa fase estão descritos no Anexo G desta dissertação.

A partir dessa fase, o dado gerado ainda na etapa pré-empilhamento, chamado de Decon, será a entrada para os próximos fluxos, ou seja, análise de velocidade e empilhamento do dado sísmico.

04-Decon.5 : Spiking/Predictive Decon F	Parameters	
Spiking/Predictive Decon		
TYPE of deconvolution		Minimum phase spiking 🛛 👻
Decon operator length(s)	80	
Apply user specified taper?		🔾 Yes 💿 No
Operator 'white noise' level(s)	1	
Window rejection factor		2.0
Time gate reference		Time 0 🔫
Get decon gates from the DATABASE?		🖲 Yes 🛛 No
SELECT decon gate parameter file		📰 decon
Output traces or filters		Normal decon output 🛛 🖵
Apply a bandpass filter after decon?		🔾 Yes 💿 No
Re-apply trace mute after decon?		🖲 Yes 🛛 No

Figura 29: Ferramenta *Spiking/Predictive Deconvolution* utilizada na etapa de deconvolução do dado sísmico.

5.4 Análise de velocidades

Nessa fase do processamento, o processo de análise de velocidades envolve comparar uma série de traços empilhados, nos quais velocidades foram aplicadas através da análise da curva hiperbólica do refletor NMO, que é uma técnica que corrige a curva do sismograma através da variação do tempo versus *Offset* (figura 30). A ferramenta *2D Supergather Formation* cria grupos de famílias CDPs como parâmetro de entrada para a análise, gerando um dado de saída chamado *precompute*, pré-stack, para a análise de velocidade.

Normalmente essa avaliação é feita manualmente, por grupo de famílias CDPs, onde podemos interagir com o gráfico (figura 31). Os campos mais vermelhos, com maior energia, são os locais onde as velocidades sintéticas são mais próximas das velocidades da onda sísmica no meio geológico.

Figura 30: Curva hiperbólica do refletor NMO.

Figura 31: Gráfico de análise das velocidades por grupos de CDPs para empilhamento dos traços o que pode ser visto à direita do gráfico.

Após a análise, foi gerado um volume de velocidade empilhado por CDP para cada linha sísmica (figuras 32, 33 e 34). O Apêndice E mostra os parâmetros utilizados nesse fluxo.

Figura 32: Volume empilhado de velocidade sintética para a linha 3A, o mais próximo das velocidades da onda sísmica no meio geológico.

Figura 33: Volume empilhado de velocidade sintética para a linha 4A, o mais próximo das velocidades da onda sísmica no meio geológico.

Figura 34: Volume empilhado de velocidade sintética para a linha 9, o mais próximo das velocidades da onda sísmica no meio geológico.

5.5 Empilhamento dos traços (Stack)

Para que o sismograma venha a se parecer novamente com a geologia do substrato rochoso, é necessário que se faça o empilhamento dos traços com a ferramenta *Normal Moveout Correction*, onde se aplica a correção de NMO de um campo de velocidade variando no espaço. O somatório de um grupo de traços refletindo um mesmo ponto amostrado em subsuperfície pode ser visto na figura 35. O fluxo relativo a fase *Stack* pode ser visto no Apêndice F desse trabalho e nas figuras 36, 37 e 38, pode-se ver o resultado do empilhamento para cada linha sísmica.

Figura 35: Somatório de um grupo de traços.

Figura 36: Linha 3A versão Stack, ou primeiro empilhamento. Já se observam reflexões com boa definição e interpretáveis até 280 ms.

Figura 37: Linha 4A versão Stack, ou primeiro empilhamento. O início da linha apresenta reflexões com baixa amplitude entre 200 e 400 ms e reflexões com alta impedância de 600 a 700 ms.

Figura 38: Linha 9 versão Stack ou primeiro empilhamento. Apresenta reflexões com alta impedância até 300 ms, abaixo as reflexões são difusas e com baixa impedância para toda a linha.

5.6 Migração

Como última etapa do processamento realizado nessas três linhas sísmicas, a migração procura deslocar os eventos mapeados, nas seções sísmicas empilhadas, para as suas respectivas posições em subsuperfície. Para dados em tempo, pode ser feita migração antes do empilhamento ou pós-empilhamento, esta última executada nesta dissertação. A ferramenta para a migração, discriminada no Apêndice G, foi a Kirchhoff Time Migration (Figura 39), que utiliza a velocidade criada na fase de análise de velocidades e computa o tempo de ida e volta da onda sísmica para cada ponto amostrado em subsuperfície.

Figura 39: Fluxo de migração no ProMAX/SeisSpace utilizando a ferramenta *Kirchhoff Time Migration*.

Figura 40: Linha 3A versão MIG. Nessa etapa do processamento, os eventos estão devidamente posicionados e se observam reflexões com boa definição e interpretáveis até 300 ms. Abaixo desse tempo aparecem refletores com pouca continuidade. "Sorrisos" característicos da migração são perceptíveis na base da seção sísmica.

Figura 41: Linha 4A versão MIG. Nessa etapa do processamento, os eventos estão devidamente posicionados e se observam reflexões com boa definição e interpretáveis até 200 ms, porém a migração realçou as amplitudes de reflexões entre 600 e 700 ms.

Figura 42: Linha 9 versão MIG. Nessa etapa do processamento, os eventos estão devidamente posicionados e se observam reflexões com boa definição e interpretáveis até 300 ms.

6 INTERPRETAÇÃO GEOLÓGICA DAS LINHAS

6.1 Falhas

As seções sísmicas empilhadas, tanto as versões *Stack* quanto as migradas em tempo, apresentaram estruturas de falhas normais identificáveis por apresentarem rejeito nos refletores sísmicos e descontinuidades laterais. Na parte NE das linhas 3A e 4A, e ao sul da linha 9 (Figura 44), essas estruturas estão associadas ao Alto de Cabo Frio, um alto estrutural com origem em eventos magmáticos ocorridos no Terciário; na figura 43 podem ser vistos seu posicionamento geográfico e estruturas de falhas junto às linhas sísmicas.

Figura 43: Alto de Cabo Frio, com linhas sísmicas posicionadas sobre a sua borda. (Fonte: Rangel, 2006)

Figura 44: Posicionamento das linhas sísmicas na parte sul da Bacia de Campos sobre imagem de Rangel (2006).

Essas falhas normais foram identificadas em amarelo nas seções sísmicas migradas para as linhas 3A, 4A e 9, em posições próximas ao que seria a borda do Alto de Cabo Frio. Isto pode ser observado nas figuras 45, 46, 47.

Figura 45: Estruturas de falhamento normal identificado na linha sísmica 3A.

Figura 46: Estruturas de falhamento normal identificado na linha sísmica 4A, possivelmente gerado por magmatismos do Terciário.

NE

Figura 47: Estruturas de falhamento normal identificado na linha sísmica 9 geradas por blocos de altos estruturais em alternância de *horsts* e *grabens*, como os identificados acima com larguras variando de 400 à 1250 m.

6.2 Discordâncias

As linhas sísmicas apresentam algumas reflexões com características de discordâncias, essas por sua vez limitam em topo e base sismosequências com características específicas. Embora não seja uma discordância, a primeira reflexão com alta impedância e comum em todas as linhas é o **fundo do mar**. Este possui continuidade lateral, com amplitude sísmica positiva, refletindo o contraste de velocidade entre a água do mar e o sedimento do fundo marinho, sendo discriminado em azul e nome **FM** (figura 48).

A primeira discordância interpretada, chamada de **discordância A**, foi discriminada com a cor verde; de amplitude positiva pode também ser vista em todas as seções sísmicas, esta apresenta continuidade lateral, porém seu refletor é difuso na parte NE das linhas 3A e 4A. Em pesquisas realizadas anteriormente junto ao grupo de estudos de sistemas deposicionais em águas profundas da Universidade Federal do Rio de Janeiro, em associação com dados de testemunhos *piston core*, bibliografia da área e interpretação sumária de sísmica 2D de alta resolução da plataforma da Bacia de Campos, pertencentes à mesma aquisição sísmica que as 3 linhas desta dissertação, discriminou-se essa reflexão como possível discordância que separa o Pleistoceno do Holoceno (Jesus, 2009).

Ainda uma segunda reflexão foi identificada em todas as linhas, chamado de **discordância B**, cor azul claro, com amplitude positiva muito forte. Apresenta um padrão contínuo, porém irregular (Figura 48).

Por último foi identificado um refletor descontínuo e irregular com amplitude negativa muito forte, chamado de **discordância C**, com mergulho forte para nordeste. Esse foi bem identificado na linha 3A, com a cor rosa.

Figura 48: Linha 3A apresentando falha normal (preto), o FM e as discordâncias A, B e C.

Figura 49: Linha 4A apresentando falha normal em preto, o FM e a discordância A.

6.3 Sismofácies de preenchimento

Algumas estruturas de preenchimento puderam ser bem identificadas nas linhas sísmicas 3A e 4A, pois apresentavam relevo negativo e refletores que truncam suas bordas em *onlap* ou com inclinação. Possivelmente tais canais fazem parte de um sistema de drenagens que entalhou a plataforma, durante o nível de mar baixo, devido à glaciação de 15.000 – 18.000 anos atrás; entretanto, devido a somente 3 linhas terem sido reprocessadas, não foram mapeados tridimensionalmente, o que poderia identificar paleodrenagens de sedimentos na

plataforma. Porém suas características quanto à geometria de preenchimento podem ser observadas nas figuras 50 e 51.

Figura 50: Paleocanais com preenchimento vertical e complexo, identificados na linha 3A, dentro da sismossequência compreendida entre a discordância A e a discordância B.

Figura 51: Paleocanais com preenchimento vertical aparentando alargamento das bordas na linha 4A, compreendidos entre a discordância A (possível discordância Pleistoceno-Holoceno) e a discordância B.

6.4 Sismofácies de alta impedância

Nas linhas sísmicas foi identificado um grupo de refletores subparalelos, contínuos, com alta impedância e alta velocidade sísmica. Essa configuração prejudicou a resposta dos refletores abaixo dessa camada, que vai do fundo do mar até próximo a profundidades em tempo de 140 ms, apresentando ainda multiplicidade até 280 ms (figura 52). Geologicamente, nessa posição estão depositados sedimentos pleistocênicos carbonáticos da Fm. Emborê (Membro Grussaí). Sabe-se que os carbonatos apresentam essa característica faciológica na sísmica, com reflexões de alta impedância e algumas vezes caóticas.

Figura 52: Sismofácies de alta impedância (linha 4A) possivelmente devido à existência de banco de calcários.

7 RESULTADOS COMPARADOS

Como o objetivo principal desse trabalho foi o reprocessamento das linhas 3A, 4A e 9 na plataforma da Bacia de Campos, pretende-se neste capítulo comparar alguns dados originais com os reprocessados, para que se possa ter uma noção dos resultados. Vale ressaltar que não necessariamente deverão ser melhores em todos os aspectos, uma vez que não foi feita nova aquisição, e esta afeta muito a qualidade do imageamento, independente do tipo de processamento aplicado.

Analisando a figura 53, nota-se que a seção superior (original) quase não apresenta ganho natural quando mostrada no SeisVision/Geographix[™]. Sendo assim, para identificação de quaisquer estruturas como falhas e paleocanais, seria necessário aplicar um ganho extra de *display*, essa aplicação realça os refletores sísmicos de forma exagerada e com eles os ruídos e múltiplas, podendo confundir o intérprete. Já a seção inferior, reprocessada, apresenta um ganho natural superior, sendo possível interpretar com segurança reflexões e estruturas sísmicas até o tempo duplo de 300 ms.

Figura 53: Comparação da seção sísmica 3A original e reprocessada com maior ganho natural em amplitudes e refletores interpretáveis nítidos em profundidades de até 0,3 seg.
Como pode ser visto na figura 54, reflexões sem múltiplas e bem definidas podem ser vistas até profundidades em tempo de 400 ms na linha 3A reprocessada. Estes apresentam boa continuidade lateral. A figura 50 apresentou possibilidade de identificar paleocanais entre as discordâncias A e B, na linha 3A; essa mesma seção sísmica sem o reprocessamento foi considerada ruim por Jesus (2009) para identificar paleocanais.

Figura 54: Parte da seção sísmica 3A mostrando refletores interpretáveis até 400 ms.

As linhas 4A e 9 também tiveram melhoras com o reprocessamento, sendo visíveis reflexões e estruturas que só apareceriam na original se fosse aplicado um ganho de *display*, o que falseava e distorcia a imagem, embora no fluxo de processamento original fosse utilizado mais ganho AGC (1000) do que no reprocessamento atual AGC (500) como visto na Tabela 3. Analisando a figura 55, pode-se ver no detalhe, dentro do círculo vermelho, uma reflexão ondulada, indicando uma superfície de relevo negativo, comum nas duas imagens. A primeira é a uma parte da linha original e a segunda pertence à mesma parte da linha 9 reprocessada.

SW

Figura 55: Comparação entre seção original e reprocessada para a linha sísmica 9, salientando a superfície ondulada por escavação de paleocanais, com melhores amplitudes visíveis para a seção com reprocessamento.

Algumas reflexões foram bem identificadas, caracterizando importantes unidades sísmicas nas linhas da plataforma de Campos. Na figura 56, são visíveis todas as discordâncias mencionadas no capítulo anterior, paleocanais e falhas normais e em flor.

NE

Figura 56: Parte da linha 3A com discordâncias, paleocanais e falhas em flor.

Índice p/	Parâmetros no processamento	Processamento	Reprocessamento
Apêndice		original	atual
Fluxo 1	Análise por displayde cada registro	sim	sim
Fluxo 1	Remasterização para SGY	sim (16 Bits)	sim (32 Bits)
Fluxo 2	Análise de geometria	sim	sim
Fluxo 3	Análise espectral de frequências	não	sim
Fluxo 4	Filtro de frequência trapezoidal	corta baixa 10 Hz	Ormsby bandpass (50-80-200-250 Hz)
Fluxo 4	Deconvolução	sim	Spiking/Predictive Decon
Fluxo 5	Ganho	AGC 1000	AGC 500
Fluxo 5	Análise de velocidade	Velan automático	1200-6000 (m/s)/7 CDPs
Fluxo 6	Filtro de frequência trapezoidal	não	Ormsby bandpass (50-80-200-250)
Fluxo 6	Correção NMO	sim	sim
Fluxo 6	Filtro de frequência F-X	corta baixa 50 Hz	80-200 Hz
Fluxo 6	Empilhamento <i>Stack</i>	sim	sim
Fluxo 7	Migração em tempo	não	Kirchhoff Time Migration
Fluxo 8	Transcrição para SGY c/ edição dos Headers	não	(Ebcdic, Binary Header e Trace Header)

Tabela 3: Parâmetros comparativos entre o processamento original e o aplicado no reprocessamento das 3 linhas sísmicas.

CONCLUSÕES

A aquisição sísmica executada possuiu baixa cobertura marítima, sendo utilizados apenas 24 canais de recepção. Esse fato prejudicou muito a definição do imageamento, havendo perda de sinal para profundidades maiores que 700 ms e visualização ruim das amplitudes nas reflexões que não apresentavam boa continuidade. Outro problema ocorrido durante a aquisição foi a diferença de tempo, em torno de um segundo, do sistema de navegação PRECISELAY entre as informações recebidas de tiros anteriores com o comando enviado para os canhões de ar comprimido para novos tiros; a posição do tiro é calculada a partir das coordenadas do tiro anterior, não havendo outros processos de ajuste do intervalo de tiro. Assim, durante a aquisição, observou-se uma variação entre 10,5 e 16,5m nos intervalos de tiro, com média em torno de 13,7 m definidos pelas coordenadas geradas. Estas distorções ocorreram aleatoriamente, afetando mais as linhas 3A e 9, onde os intervalos de tiros chegaram a extremos de 5 m e 22 m. Outro efeito igualmente danoso que ocorreu nas linhas 3A e 9, foi o sistema de navegação suprimir qualquer informação do ponto de tiro durante trechos de até 160 m, sendo necessário interpolar o posicionamento do tiro pela média de 13,7m. A esses problemas podemos somar as variações de velocidade do barco em situações de mar agitado, assim como a ausência de um programa de compensação para melhor definição da coordenada absoluta do ponto de disparo. Isso piorou o imageamento dos sismogramas sintéticos.

Embora tenham havido os problemas acima mencionados na aquisição, o reprocessamento das 3 linhas sísmicas 2D de alta resolução, feito nesse trabalho, foi executado de acordo com os objetivos inicialmente propostos e levaram a uma grande melhoria de qualidade das mesmas. As três linhas sísmicas antes de reprocessadas apresentaram muitos ruídos de baixas frequências em torno de 20 a 30 Hz e alguns *spikes* com frequências abaixo de 10 Hz. Por isso, foi executada a análise de frequências por espectro, permitindo separar intervalos de interesse e limitar em mínimos de 70 Hz e máximos de 250 Hz as frequências aproveitáveis. As linhas 3A e 4A possuíam baixo gradiente na plataforma, o que facilitou a análise e montagem do modelo de velocidades por CDPs. Essa análise, quando feita com precisão, por si só já atenuava o efeito de múltiplas, comuns nas linhas do processamento anterior. Mesmo assim, foi feita uma tentativa de aplicação de filtragem Radon, porém sem sucesso razoável, sendo omitida no fluxo de reprocessamento. A linha 9 possuía muitas múltiplas, e para ela foi feita também análise de velocidade por grupos de

CDPs. Entretanto no resultado final da seção migrada ainda podem-se observar refletores múltiplos a partir de 500 ms. Todas as linhas reprocessadas foram empilhadas e migradas em tempo, apresentando melhorias no que foi proposto anteriormente, ou seja, mostraram melhor razão sinal versus ruído, maior recuperação das amplitudes e maior alcance interpretável para profundidade de tempo, em comparação com as linhas do processamento anterior. Também vale ressaltar a eficiência e praticidade do software ProMAX/SeisSpace® da Landmark na versão R5000, utilizado no processamento dos dados.

Como parte de um controle de qualidade das 3 linhas reprocessadas, procurou-se fazer uma interpretação sumária nas seções sísmicas com o *software* SeisVision da suíte Geographix[®], identificando e caracterizando refletores que tinham significado geológico importante. Assim, foram identificadas 4 grandes quebras de velocidade, a saber, o fundo do mar FM, a discordância A, possível discordância Pleistoceno-Holoceno, uma discordância B com pouca continuidade lateral, descontinuidades geradas por falhas normais e uma discordância C descontínua e irregular, com amplitude negativa muito forte. Também foram identificadas sismofácies de preenchimento com paleocanais na sismossequência compreendida entre a possível discordância Pleistoceno-Holoceno e a discordância B. Vale ressaltar que os paleocanais interpretados estão situados no topo do Pleistoceno, possivelmente associados a rebaixamento do nível do mar a 18.000 anos.

Em função dos resultados apresentados nesta dissertação, vale ressaltar a importância do reprocessamento de dados sísmicos, porém devem-se observar os critérios empregados na aquisição sísmica, uma vez que são determinantes na qualidade do imageamento para se realizarem interpretações geológicas mais exatas e eficientes.

ABREU, Carlos Jorge. 2005. Complexo de Lobos do Sistema Deposicional Moderno de Águas Profundas Almirante Câmara Imageado por Sísmica de Alta-Resolução, Bacia de Campos. 130 p. Dissertação (Doutorado em Geologia) – Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2005.

BIZZI, L. A. et al. Bacias Sedimentares da Margem Continental Brasileira Geologia. *Tectônica e Recursos Minerais do Brasil* 87. Brasília, eds. CPRM, 2003.

BROWN, L. F., JR.; FISHER, W. L. Seismic stratigraphic interpretation and petroleum exploration: Geophysical principles and techniques: American Association of Petroleum Geologists Bulletin. Continuing Education Course Notes Ser. 16, p. 56, 1980.

DIAS, J. L. et al. Aspectos da evolução tectono- sedimentar e a ocorrência de hidrocarbonetos na Bacia de Campos. In: *Origem e Evolução de Bacias Sedimentares*, Rio de Janeiro, PETROBRÁS, eds. GABAGLIA, G. P. R. & MILANI, E. J., p 333-359, 1990.

JESUS, Igor Lima de. Arquitetura Deposicional da Plataforma Marinha Recente da Bacia de Campos. 2009. 70 f. Monografia (Graduação em Geologia) – Programa de graduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

LIMA, Andréa França. Comparação dos Sistemas Sedimentares Profundos da Bacia Sudeste-Sul do Brasil com Ênfase no Sistema Misto Colúmbia. 2003. Tese (Doutorado em Oceanografia Química e Geológica) – Programa de Pós-graduação em Oceanografia Química e Geológica. Instituto Oceanográfico, Universidade de São Paulo, Fundação de Amparo À Pesquisa. São Paulo.

MITCHUM, JR., R.M.; VAIL, P.R. & SANGREE, J.B. Seismic stratigraphy and global changes of sea level. Stratigraphic interpretation of seismic reflection patterns in depositional sequences". *Seismic Stratigraphy applications to hidrocarbon exploration* – Memoir 26. American Association of Petroleum Geologists, Tulsa, Oklahoma, In: Payton, C.E., Part 6, p. 117-133, 1977b.

MOHRIAK, W.U., Recursos energéticos associados à ativação tectônica mesozóicocenozóica da América do Sul. In: V. Mantesso – Neto, A. Bartorelli, C.D.R. Carneiro and B.B. Brito-Neves (eds.), Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida, cap. XVIII, p. 293 – 318, 2004.

MOHRIAK, W.U., et al. Salt tectonics and structural styles in the deep-water province of the Cabo Frio region, Rio de Janeiro, Brazil. In *Salt tectonics: a global perspective*. American Association of Petroleum Geologists, Memoir 65, Tulsa, USA, p. 273-304. 1995.

PAYTON, Charles E.. Seismic Stratigraphy-applications to hydrocarbon exploration. *American Association of Petroleum Geologists*, Tulsa, Oklahoma, Memoir 26. VII + 516 pp, 1977.

PERES, Wagner Elias. Seismic-stratigraphic study of the Oligocene-Miocene shelf-fed turbidite systems of the Campos Basin.1990. Brasil. Ph. D. Dissertation, Department: Geological Sciences. The University of Texas at Austin.

PELIZZON, Marcela Marques. Caracterização das Unidades Sísmicas, Processos Sedimentares e Idade do Cânion Almirante Câmara, Bacia De Campos. 2005. 84 f. Dissertação (Mestrado em Geologia e Geofísica Marinha) – Programa de Pós-graduação em Geologia e Geofísica Marinha, Instituto de Geofísica, Universidade Federal Fluminense, Niterói.

RANGEL, H. D. et al., Bacia de Campos. Boletim Geociências PETROBRÁS, Rio de Janeiro, v. 8, v.1, p.203-217, 1994.

SCHALLER, H. Estratigrafia da Bacia de Campos. In: Congresso Brasileiro de Geologia, 27, 1973. Anais..., Aracaju, SBG. 1973. V. 3, p. 247-258.

SCHEREINER, S.; Souza, M. B. F. M.; Migliorelli, J. P. R. Modelo digital da geomorfologia do fundo oceânico da Bacia de Campos. B. Geoci. Petrobras, Rio de Janeiro, v. 16, n. 1, p. 157-160, nov. 2007/maio 2008

SEVERIANO RIBEIRO, Hélio J.P. Estratigrafia de Seqüências - Fundamentos e aplicações. Editora UNISINOS, p. 428, 2001.

Vail, P.R. et al. The stratigraphic signatures of tectonics, eustacy and sedimentation: an overview, in A. *Cycles and Events in Stratigraphy, II*, Tubingen: Springer-Verlag, 1991.

VAN WAGONER, J.C. et al."An overview of the fundamentals of sequence stratigraphy and key definitions. *Sea-Level Changes: An Integrated Approach*. Society of Economic Paleontologists and Mineralogists, Special Publication 42, p. 39-46, 1988.

VIANA, et al. Hydrology, Morphology and Sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology, v. 115 p. 133-157, Janeiro 1998.

WINTER, R. W. *et al.* Bacia de Campos. Boletim de Geociências da Petrobras, Rio de Janeiro, v.15, n. 2, p. 501-509, maio/Nov. 2007.

SÍTIOS:

Petrobrás. A evolução da Exploração da Bacia de Campos, Disponível em: <u>http://www.clickmacae.com.br/?sec=361&pag=pagina&cod=273</u>. Acesso em 18.julho.2010

ANEXOS

A	nexo /	A - Rela	atório d	de Obs	ervado	r	LINHA:	3A	
Navio: D`[DIANA								
	Borda		Fonte						
					Canal 1		Canal 24		
		↓							
	/	i i	¥		₩		₩		
0,90 m ×	Nav. Ant.	← 26.0	m→ X∢	— 50 m	→x ←	- 143,8m -	→ x		
		Afastame	nto I	Offset curto		Secão Ativa	1		
	\					,			
	— 33.7 —	•	•		193,8 m				
	Offset Antena		I		Offset Longo		I		
				Ins	trumentac	ão			
Tipo de Fonte	Volume da fonte	Ganho Pre amp	Número	Canhões	Prof. Fonte	Arrranio Fonte	HDROFONES		
Sleeve Gun	20 cubic ir	48 dB	de	2	1 m		Teledvne		
	Razão de Amo	stragem	Comprimento	Registro	Número o	le Canais	Prof Cabo:		
Primário	0.25	me	2	c	24	ic Ganais	Prof Hidrofon	o - Assinatura da Fonto	
Secundário	0.20	1113	2	3	27			e - Assinatura da Fonte	
Filtr	•	Fil	tor	60 HZ	Notch	Outro			
Corta baixa	Slana	Corta alta	Slope	00 HZ	NOICH	Outro			
	6 dB/oit		Siope	Out	ł				
Gravação		Out	Formata	Ou	Tana Drives		Traca ofestado		
Instrumento			SEG	D 8048			74		
Nevegação		Marinha de	D Brasil	Brojocão		MC			
Navegação	DGPS		FUGRO	TUJEÇão		300	i raço proximo 1		
Velesided	de Deres	Coordonadas		251020 77	7405642.07	Comp (lim)	I I		
velocidade	e do Barco	Antona GPS	Finais	201930.77	7501292.50	Comp. (km)	Interval. Grupo		
~3.0	knots	Antena GPS	Filiais	310134.10	7501262.50	00.200	0.23		
Cartucho	5P Númere	Registro	Prof. Agua	Prof. Cabo	(14.14	longoo de elime ei	Observações	radar probleman ata)	
	Numero	Nulliero	(m) 21			anças de clima, si	Dog 1 Tor	nador, problemas, etc.)	
3	2 70	2 70	21	1,9-2,1	BOL , 00.4	311	Reg. 1 Tes		
3	1/2	1/2	31	2,0-2,7					
3	216	216	31	2,3-2,4					
3	210	210	32	2.2-2.8					
3	200	200	31	2,2-2,0					
3	/20	/20	32	2,2-2,3					
3	501	501	32	1 0-2 7					
3	573	573	32	2.2.2.5					
3	644	644	33	2,2-2,3					
3	716	716	33	18-25					
3	787	787	33	21-24					
3	859	859	33	21-26					
3	931	931	33	1.9-2.2	ļ				
3	1003	1003	34	1,9-2,4					
3	1076	1076	33	21-26					
3	1148	1148	33	21-32					
3	1221	1221	34	1 8-2 7					
3	1294	1294	34	21-29					
3	1366	1366	34	2 0-3 1					
3	1439	1439	33	1.9-2.9					
3	1512	1512	34	2.0-2.4					
3	1586	1586	35	2.1-2.1	ļ				
3	1654	1654	33	21-22	ļ				
3	1725	1725	33	22-26	ļ				
3	1797	1797	33	2.1-2.1					
3	1877	1877	33	1.8-1 7					
3	1941	1941	34	1,8-2,5					

	Anexo	A - Rela	atório d	de Obs	ervador	LINHA: 3A
Cliente	Data	Área e/ou Blo	CO	Número da L	inha	Direção da Linha
	3/24/2004	Bacia de C	ampos	3A	_	75 °
Cartucho	SP	Registro	Prof. Água	Prof. Cabo		Observações
Número	Número	Número	(m)	(m)		
3	2014	2014	33	1,8-2,2		
3	2085	2085	33	1,9-2,1		
3	2157	2157	32	1,9-1,7		
3	2228	2228	32	1,6-1,8		
3	2299	2299	32	2,0-1,8		
3	2371	2371	32	1,9-1,7		
3	2445	2445	31	1,6-1,4		
3	2520	2520	31	2,9-3,4		
3	2596	2596	31	3,4-4,0		
3	2671	2671	32	3,4-3,5		
3	2744	2744	33	3,3-2,8		
3	2817	2817	32	3,4-3,2		
3	2891	2891	32	3,6-3,6		
3	2964	2964	32	3.4-3.0		
3	3037	3037	32	2,7-3,0		
3	3110	3110	32	3,6-3,2		
3	3182	3182	33	3.4-3.2		
3	3255	3255	34	3.0-2.9		
3	3328	3328	34	3.4-3.6		
3	3401	3401	35	3.3-2.8		
3	3475	3475	35	2.6-2.4		
3	3549	3549	37	3.3-2.6		
3	3623	3623	35	3.5-3.4		
3	3698	3698	33	3.1-2.4		
3	3770	3770	36	3.2-3.0		
3	3843	3843	36	3.0-2.6		
3	3916	3916	35	3.2-3.2		
3	3989	3989	37	3.2-2.2		
3	4063	4063	37	3.2-3.0		
3	4137	4137	38	2.7-2.2		
3	4211	4211	41	3,4-2.6		
3	4283	4283	41	3.1-2.2		
3	4356	4356	44	3.3-3.2		
3	4376	4376	45	3,4-2,5	EOL 07:52h N	lão proce.RG-4377

A	nexo I	3 - Rela	atório d	de Obs	ervado	r	LINHA:	4A	<u>Pag. 1</u>
Navio: D`[DIANA							Cliente	Date
	Borda		Fonte						24-Mar-04
					Canal 1		Canal 24	Área e/ou Bloco	
		¥						BACIA DE (CAMPOS
	/	7	₩		*		★	Programa	
0,90 m ×	Nav. Ant.	← 26.0	m→ X∢	— 50 m	→x ←	- 143,8m -	→ X	Projeto C	anyon
	、	Afastamer	nto	Offset curto		Seção Ativa		Operador / Observa	idor
								LEANDRO/	DOUGLAS
◀	— 33.7 —	•			193,8 m			Direção da linha	
	Offset Antena		I		Offset Longo		l		253 °
				Ins	strumentaç	ão			
Tipo de Fonte	Volume da fonte	Ganho Pre amp	Número	Canhões	Prof. Fonte	Arrranjo Fonte	HDROFONES	ARRANJO	
Sleeve Gun	20 cubic ir	24 dB	de	2.0	1 m	Linear	Teledyne	L-10/5,63m	(0,63m)
	Razão de Amo	stragem	Comprimento	Registro	Número o	de Canais	Prof. Cabo:	2,5 +/-	0,5 m.
Primário	0.25	ms	2	S	24		Prof. Hidrofon	e - Assinatura da	Fonte
Secundário									m.
Filtr	0	Fil	ter	60 HZ	Notch	Outro			
Corta baixa	Slope	Corta alta	Slope						
3	6 dB/oit	Out		Ou	ıt			Layout do C	abo
Gravação	Туре		Formato		Tape Drives		Traço afastado	Offset Longo	
Instrumento	OYO DAS 1		SEG	D 8048	DLT		24	19	33.8 m.
Navegação	DGPS	Marinha do	o Brasil	Projeção	- DATUM	M.C.	Traço próximo	Offset curto	
Sistema		STARFIX -	FUGRO	UTM - Arat	u Campos	39°	1		50 m.
Velocidade	e do Barco	Coordenadas	Iníciais	315337.45	7493968.09	Comp. (km)	Interval. Grupo	Intervalo de Tiro	
~5.0	knots	Antena GPS	Finais	251883.91	7474498.89	66.373	6.25		12.5 m.
Cartucho	SP	Registro	Prof. Água	Prof. Ca	abo (m)		Observações		
Número	Número	Número	(m)		. ,	(Mu	danças de clima, si	tuação di mar, opera	dor, problemas, etc.)
3		1				Reg. Ruid	0		
3	2	2	52	3.2	29	Inicio da li	nha. 14:03	n - Swell:1,5	n
3	90	90	50	3.4					
3	161	161	49	4.1					
3	238	238	48	3.2					
3	312	312	49	3.1					
3	387	387	49	3.5					
3	400	400	50	3.2					
3	611	611		3.0 2.7					
3	68/	68/	49	2.1					
3	756	756	43	2.0					
3	828	828	49	3.0					
3	901	901	48	3.0					
3	972	972	47	3.1					
3	1050	1050	46	2.6					
3	1116	1116	42	2.9					
3	1187	1187	39	3.5					
3	1260	1260	41	3.2					
3	1332	1332	44	3.3					
3	1404	1404	42	3.3					
3	1477	1477	40	3.3					
3	1550	1550	41	3.6					
3	1624	1624	39	3.3					
3	1696	1696	37	3.1					
3	1767	1767	36	3.4					
3	1840	1840	38	3.3					
3	1913	1913	38	2.5					

	Anexo I	B - Rela	atório (de Obs	ervador	LINHA: 4A
Cliente	Data	Área e/ou Blo	CO	Programa		Direção da Linha
	3/24/2004	Bacia de C	ampos	Projeto (Canyon	253°
Cartucho	SP	Registro	Prof. Água	Drof	Coho (m)	Observações
Número	Número	Número	(m)	Prof.	Cabo (m)	
3	1985	1985	38	3.0	2.8	
3	2058	2058	36	3.0	2.2	
3	2130	2130	36	2.7	3.5	
3	2203	2203	35	3.0	2.9	
3	2278	2278	34	3.0	2.4	
3	2352	2352	35	2.6	2.3	
3	2426	2426	36	2.8	2.7	
3	2502	2502	36	3.7	2.4	
3	2578	2578	36	3.0	3.0	
3	2651	2651	35	3.2	2.9	
3	2723	2723	35	3.0	3.0	
3	2796	2796	34	3.7	3.0	
3	2869	2869	34	3.2	2.8	
3	2943	2943	34	3.0	2.5	
3	3018	3018	35	2.9	2.0	
3	3093	3093	35	3.2	3.0	
3	3166	3166	36	3.3	3.0	
3	3239	3239	36	3.2	2.5	SP 3281 cruza L-9
3	3311	3311	36	3.4	3.0	
3	3383	3383	35	3.0	2.1	
3	3454	3454	36	2.5	1.9	
3	3528	3528	36	3.3	2.6	
3	3602	3602	36	3.4	3.0	
3	3674	3674	37	3.7	3.0	
3	3748	3748	36	2.8	3.4	
3	3821	3821	35	3.3	2.4	
3	3894	3894	35	3.3	2.9	
3	3967	3967	34	3.0	2.4	
3	4039	4039	34	3.0	3.4	
3	4111	4111	34	3.2	2.3	
3	4184	4184	34	2.9	3.0	
3	4255	4255	33	3.2	2.7	
3	4328	4328	33	3.3	2.9	
3	4399	4399	33	3.2	3.6	
3	4472	4472	33	3.2	2.7	
3	4544	4544	33	3.1	2.5	
3	4619	4619	34	3.5	3.2	
3	4690	4690	33	3.4	2.8	
3	4762	4762	33	3.1	3.0	
3	4847	4847	33	2.8	3.0	EOL 21:37 h

A	Anexo (C - Rela	atório d	do Obs	ervado	r	LINHA:	9	Pag. 1
Navio: D`I	DIANA							Cliente	Date
	Borda		Fonte						25-Mar-04
					Canal 1		Canal 24	Área e/ou Bloco	
		¥						BACIA DE CA	MPOS
	/	7	♦		★		★	Programa	
0,90 m ×	Nav. Ant.	← 26.0	m→ X∢	— 50 m	→x ←	- 143,8m -	→ X	Projeto Car	nyon
		Afastame	nto	Offset curto		Seção Ativa	I	Operador / Observador	
	`	1						LEANDRO/DC	UGLAS
◀	➡ 33.7 —	►	•		193,8 m			Direção da linha	
	Offset Antena		I		Offset Longo		I	359	0 0
				Ins	strumentaç	ão			
Tipo de Fonte	Volume da fonte	Ganho Pre amp	Número	Canhões	Prof. Fonte	Arrranjo Fonte	HDROFONES	ARRANJO	
Sleeve Gun	20 cubic ir	24 dB	de	2.0	1 m	Linear	Teledyne	L-10/5,63m(0,	63m)
	Razão de Amo	stragem	Comprimento	Registro	Número o	de Canais	Prof. Cabo:	2,5 +/- 0,	5 m.
Primário	0.25	ms	2	S	24		Prof. Hidrofon	e - Assinatura da Fo	nte
Secundário									m.
Filtr	0	Fil	ter	60 HZ	Notch	Outro			
Corta baixa	Slope	Corta alta	Slope						
3	6 dB/oit	Out		Ou	ıt			Layout do Cabo	
Gravação	Туре		Formato		Tape		Traço afastado	Offset Longo	
Instrumento	OYO DAS 1		SEG	D 8048	DLT		24	193.	8m.
Navegação	DODO	Marinha do	o Brasil	Projeção	- DATUM	M.C.	Traço próximo	Offset curto	
Sistema	DGP5	STARFIX -	FUGRO	UTM - Arat	tu Campos	39°	1	5	0 m.
Velocidade	e do Barco	Coordenadas	Iníciais	273315.18	7428603.60	Comp. (km)	Interval. Grupo	Intervalo de Tiro	
~5.0	knots	Antena GPS	Finais	271709.20	7536003.93	107.412	6.25	12.	5 m.
Cartucho	SP	Registro	Prof. Água	Drof Co	aha (m)		Observações		
Número	Número	Número	(m)	Prof. Ca	abo (m)	(Mu	danças de clima, si	tuação di mar, operador,	problemas, etc.)
5	2	2	58	3.1	3.0	Inicio de li	nha 13:50	RG-1 Teste	
5	86	86	58	2.1	2.7				
5	161	161	58	2.7	2.9				
5	234	234	55	2.5	2.3				
5	307	307	56	2.6	2.1				
5	381	381	55	2.3	2.7				
5	454	454	56	2.7	2.5				
5	528	528	55	3.0	2.3				
5	600	600	55	3.4	2.4				
5	671	671	52	2.7	2.6				
5	747	747	52	2.8	2.7				
5	820	820	50	2.6	4.6				
5	893	893	51	2.3	2.4				
5	966	966	51	4.5	3.0				
5	1039	1039	52	2.6	2.8				
5	1113	1113	52	2.7	2.0				
5	1186	1186	53	2.8	2.2				
5	1262	1262	53	2.1	3.0				
5	1335	1335	52	3.0	1./				
5	1409	1409	53	2.ŏ	2.1				
5 5	1402	1402	53	3.1 2.2	2.9				
5 F	1004	1004	52	2.2	3.0				
5 E	1600	1600	50	2.4	2.1				
5 E	1770	1099	30	3.0	2.0				
5	1010	1010	49	2.0	2.9				
5	1040	1040	40	3.U 2.7	3.1 27				
5	1910	1980	40	2.1	2.7				
5	1909	1909	I 40	2.1	∠ ./	I			

	Anexo (LINHA: 9				
Cliente	Data 3/25/2004	Direção da Linha 359º				
Cartucha	6/20/2004	Bagistro	Brof Água		Juliyon	Observesões
Cartucho	SP Númere	Registro	Prof. Agua	Р	rof. Cabo (m)	Observações
Numero 5	2061	2061	(m) /2	2.5	2.0	
5	2001	2001	40	2.5	3.0	
5 5	2131	2131	49	2.0	3.2	
5 5	2200	2200	47	2.2	2.0	
5	2209	2269	40	2.0	3.2	
5 5	2339	2339	44	2.0	2.9	
5	2410	2410	43	2.7	3.2	
5 5	2483	2483	42	3.6	4.3	
5	2555	2555	39	2.8	3.6	
5	2626	2626	36	3.4	3.5	
5	2701	2701	39	3.0	3.9	
5	2775	2775	38	3.4	5.0	SP-2756 c/ interv. 22m
5	2849	2849	39	3.2	2.3	Cruzou L5 sp 2820
5	2921	2921	38	2.9	3.7	SP-2914 c/ interv.35m
5	2994	2994	38	2.7	2.4	
5	3066	3066	37	3.0	2.9	
5	3140	3140	37	2.9	1.9	
5	3214	3214	38	2.5	2.0	
5	3286	3286	37	2.5	2.0	
5	3359	3359	38	3.1	2.7	
5	3432	3432	36	3.1	2.7	
5	3503	3503	36	3.0	2.8	
5	3577	3577	36	3.0	3.1	
5	3651	3651	36	2.6	2.7	
5	3725	3725	36	3.1	2.9	
5	3799	3799	36	2.9	3.5	Cruzou L4A sp 3807
5	3872	3872	36	2.7	2.8	
5	3945	3945	38	3.3	2.7	
5	4019	4019	35	2.7	3.2	
5	4092	4092	36	3.3	2.5	
5	4170	4170	35	3.2	2.9	
5	4240	4240	34	2.9	2.2	
5	4314	4314	36	2.6	2.6	
5	4388	4388	35	3.3	3.5	
5	4462	4462	36	3.0	2.3	
5	4536	4536	35	3.0	2.5	Cruzou L3A sp 4565
5	4610	4610	32	2.8	3.0	
5	4685	4685	31	3.1	2.2	
5	4758	4758	32	2.6	1.6	
5	4832	4832	31	2.7	2.1	
5	4906	4906	30	3.3	2.3	
5	4980	4980	31	2.8	2.5	
5	5056	5056	32	3.0	2.5	
5	5127	5127	33	2.8	2.4	
5	5201	5201	33	3.4	2.1	
5	5274	5274	33	2.8	2.5	
5	5348	5348	32	2.5	3.2	
5	5423	5423	31	2.9	2.6	
5	5496	5496	32	2.9	2.6	
5	5571	5571	.31	2.0	2.0	
5	5645	5645	30	2.5	2.7	
5	5718	5718	30	2.5	2.0	
, v		5710		<u> </u>	<i>L</i> . <i>L</i>	1

	Anexo C - Relatório do Observado LINHA: 9								
Cliente	Data 3/25/2004	Área e/ou Blo Bacia de C	co Campos	Número da Li Projeto (^{nha} Canyon	Direção da Linha 359º			
Cartucho Número	SP Número	Registro Número	Prof. Água (m)	Prof. C	abo (m)	Observações			
5	5791	5791	29	3.2	3.0	SP- 5782 c/LR- 2C			
5	5865	5865	29	2.6	2.4				
5	5937	5937	29	3.0	2.9				
5	6010	6010	29	2.7	1.9				
5	6083	6083	27	3.5	3.2				
5	9155	9155	27	2.9	2.1				
5	9227	9227	26	3.1	2.7				
5	6300	6300	26	2.9	3.0				
5	6372	6372	25	2.9	2.9				
5	6446	6446	24	3.0	2.6				
5	6520	6520	25	2.5	2.8				
5	6593	6593	24	3.0	3.0				
5	6667	6667	24	3.0	3.1				
5	6740	6740	23	2.6	2.8				
5	6815	6815	22	3.3	2.4				
5	6858	6858	22	3.2	2.8				
5	6965	6965	20	2.7	2.7				
5	7039	7039	21	3.1	2.7				
5	7112	7112	19	2.4	3.0				
5	7186	7186	17	3.2	3.0	SP- 7150 c/ LR- 1A			
5	7258	7258	16	3.0	2.6				
5	7331	7331	14	2.9	2.8				
5	7404	7404	13	2.9	2.2				
5	7477	7477	12	3.2	2.1				
5	7549	7549	12	3.2	2.4				
5	7620	7620	11	2.9	2.8				
5	7693	7693	10	3.2	2.8				
5	7764	7764	9	3.0	2.9	SP-7731 - 23m			
5	7836	7836	9	2.6	3.8	RG-7842 sem coord			
5	7854	7854	9	3.0	3.1	EOL 01:03h			
						SP - 7841 - 27m			

APÊNDICES

Flow 01-Imput Apêndice A

1. SEG-Y Input							
Name	Text	Value					
FLAVOUR	Type of SEG-Y	Standard fixed trace length					
BYTESWAP	Invert normal byte order correction?	No					
STORAGE	Type of storage to use	Disk					
TODTYPE	Select disk file type	Disk Image					
		/home/r5000/Mestrado_Zaque/					
FILENAME	Enter DISK file path name(s)	Linha3a/3a.sgy					
VBROWSE	Browse for DISK file path name(s)	Browse					
UPDATEDB	Update LIN database at end of input?	Yes					
SR_OPTION	Override input data's sample interval?	No					
TL_OPTION	Override input data's trace length?	No					
NSAMPS1	Samples per data trace (override binary header)	0					
STORE	Store reel header in processing history?	Yes					
AUXOPT	Input AUXILIARY traces?	Yes					
TTRACE	Get CHANNEL NUMBER from trace headers?	Yes					
FORMAT	Input trace FORMAT	Get from header					
MPFACTOR	Apply trace weighting factors (2**-N)?	Yes					
DISPFLAG	Display ensemble information?	No					
ТМАХ	Maximum TIME to input	0.0					
STACKFLG	Is this STACKED data?	No					
MAXDTR	MAX traces per ensemble	9999					
PRIM_KEY	Primary SORT header word (domain of data)	SHOT					
INKEYNAM	Input PRIMARY selection choice?	Input ALL					
CHAN_KEY	Input SECONDARY selection choice?	None					
COORREF	Input Global XY reference coordinates?	No					
COORSCAL	Use the coordinate scalar?	No					
TIMESCAL	Use the Rev 1 time scalar?	Yes					
SCANALL	Scan range of all header words?	Yes					
REVONE	Use SEG-Y Rev 1 header mapping?	Autodetect					
IOVER	Remap SEG-Y header values?	No					
	2. Header Values						
Name	Text	Value					
OUT_DEVC	Output device	Output					
IENDENS	List only last trace in ensemble?	No					
HDR_LIST	SPECIFY header entries	FFID,CHAN,TFULL_E					
	3. Disk Data Output						
Name	Text	Value					
DESCRIPT	Output Dataset Filename	3a_Field					
STATUS	New, or Existing, File?	New					
ТМАХ	Record length to output	0.0					
COMPRESS	Trace sample format	32 bit					
ALTSTORE	Skip primary disk storage?	No					

Apêndice A

4. Disk Data Input							
Name	Text	Value					
LABEL	Select dataset	3a_Field					
HISTPROP	Propagate input file history	Yes					
SORTOPT	Trace read option	Get All					
ITERATE	Read the data multiple times?	No					
THDRONLY	Process trace headers only?	No					
SR_OPTION	Override input data's sample interval?	No					
	5. Trace Display						
Name	Text	Value					
XSERVER	Select display DEVICE	This Screen					
TSTART	Specify display START time	0.0					
TEND	Specify display END time	0.0					
NUM_DISPLAY_							
TRACES	Maximum number of TRACES/screen	0					
NUM_ENSEMBLES	Number of ENSEMBLES(line segments)/screen	1					
ENS_PAN_INC	Ensemble increment	0					
VAR_SPACE	Do you want to use variable trace spacing?	No					
OUTPUT_MODE	Output Mode	When Done					
DISPMODE	Trace display MODE	Color					
COLORBAR	Display color bar?	No					
INTERP	Interpolation	Smooth					
HEADBOARD	Header Plot Parameter	No trace header selected					
AUTOSAVE	Automatically SAVE screens?	Yes					
MAXIMAGES	Maximum number of screen images to save.	10					
SAVETYPE	Save screens in Color?	Yes					
SAVEWHERE	Where to save screen images	Xserver					
NBATCH	Number of screens to collect	1					
DIRECTION	DIRECTION of trace plotting	Left to right					
POLARITY	POLARITY of trace display	Normal					
LKEYNAM1	Primary trace LABELING header entry	Field file ID number					
LKEYNAM2	Secondary trace LABELING header entry	Recording channel number					
LABLMOD2	MODE of Secondary trace annotation	Incremental					
LABLINC2	INCREMENT for Secondary trace annotation	5					
SCALEMODE	Trace scaling mode	Conventional					
CLIP	Trace excursion at which to CLIP	2.0					
ASCALAR	SCALAR for sample value multiplication	1.0					
SCALEOPT	Trace scaling option	Individual					
NPANEL	Number of display panels	1					
ORIENTATION	Trace Orientation	Vertical					

Flow 02-Geom Apêndice B

1. Disk Data Input						
Name	Text	Value				
LABEL	Select dataset	3a_Field				
HISTPROP	Propagate input file history	Yes				
SORTOPT	Trace read option	Get All				
ITERATE	Read the data multiple times?	No				
THDRONLY	Process trace headers only?	No				
SR_OPTION	Override input data's sample interval?	No				
	2. Inline Geom Header Load					
Name	Text	Value				
DO_STATS	Compute and apply statics to sea level?	Yes				
W_VEL	Water velocity	1480.0				
CHEADER1	Primary header to match database	FFID				
CHEADER2	Secondary header to match database	None				
IUSE_TRC	Match by valid trace number?	No				
KILL_CDP	Drop traces with NULL CDP headers?	No				
KILL_SRF	Drop traces with NULL receiver headers?	No				
IVERBOSE	Verbose diagnostics?	No				
	3. Disk Data Output					
Name	Text	Value				
DESCRIPT	Output Dataset Filename	3a_Geom				
STATUS	New, or Existing, File?	New				
TMAX	Record length to output	0.0				
COMPRESS	Trace sample format	32 bit				
ALTSTORE	Skip primary disk storage?	No				

Flow 03-Ruidos Apêndice C

1. Disk Data Input							
Name	Text	Value					
LABEL	Select dataset	3a_Geom					
HISTPROP	Propagate input file history	Yes					
SORTOPT	Trace read option	Get All					
ITERATE	Read the data multiple times?	No					
THDRONLY	Process trace headers only?	No					
SR_OPTION	Override input data's sample interval?	No					
	2. Interactive Spectral Analysis						
Name	Text	Value					
SELECTION_METHOD	Data selection method	Simple					
PAN_TYPE	Display data by traces or ensembles?	Traces					
NUM_TRACES	Number of traces per analysis location	100					
TRACE_PAN_INC	Number of traces between analysis locations	0					
PRIM_KEY	Primary header for sorting and trace label	Live Source Number					
SEC_KEY	Secondary header for sorting and trace label	number					
SHOW_AVE_POWER	Display the average power spectrum?	Yes					
POWER_TYPE	Type of scaling for power spectrum	Percent Power					
POWER_MAPPING	Type of mapping for power spectrum	Linear					
REF_POWER	Reference power	-1.0					
SHOW_AVE_PHASE	Display the average phase spectrum?	Yes					
SHIFT_OPTION	Time, sample, linear or no phase shift?	None					
UNWRAP	Unwrap the phase spectrum?	No					
SHOW_TRACE_DATA	Display the selected trace data?	Yes					
SHOW_FX_POWER	Display the FX power spectrum?	Yes					
SHOW_DATA_TAPER	Display the pre-FFT time window?	No					
TAP_TYPE	Pre-FFT time window taper type	Hanning					
PCT_FLAT	Percent flat for the pre-FFT time window	80.0					
AUTO_FREQ_RANGE	Set frequency display ranges automatically?	Yes					
AUTO_POWER_RANGE	Set power display ranges automatically?	Yes					
AUTO_PHASE_RANGE	Set phase display ranges automatically?	Yes					

Apêndice C

3. Trace Display		
Name	Text	Value
XSERVER	Select display DEVICE	This Screen
TSTART	Specify display START time	0.0
TEND	Specify display END time	0.0
NUM_DISPLAY_TRACES	Maximum number of TRACES/screen	0
	Number of ENSEMBLES(line	
NUM_ENSEMBLES	segments)/screen	1
ENS_PAN_INC	Ensemble increment	0
VAR_SPACE	Do you want to use variable trace spacing?	No
OUTPUT_MODE	Output Mode	When Done
DISPMODE	Trace display MODE	WT/VA
VARBIAS	Offset BIAS for variable area	0.0
INTERP	Interpolation	Smooth
	 	No trace header
HEADBOARD	Header Plot Parameter	selected
AUTOSAVE	Automatically SAVE screens?	Yes
MAXIMAGES	Maximum number of screen images to save.	10
SAVETYPE	Save screens in Color?	Yes
SAVEWHERE	Where to save screen images	Xserver
NBATCH	Number of screens to collect	1
DIRECTION	DIRECTION of trace plotting	Left to right
POLARITY	POLARITY of trace display	Normal
-		External source
LKEYNAM1	Primary trace LABELING header entry	location number
		Recording channel
LKEYNAM2	Secondary trace LABELING header entry	number
LABLMOD2	MODE of Secondary trace annotation	Incremental
LABLINC2	INCREMENT for Secondary trace annotation	5
SCALEMODE	Trace scaling mode	Conventional
CLIP	Trace excursion at which to CLIP	2.0
ASCALAR	SCALAR for sample value multiplication	1.0
SCALEOPT	Trace scaling option	Individual
NPANEL	Number of display panels	1
ORIENTATION	Trace Orientation	Vertical
	4. Disk Data Input	
Name	Text	Value
LABEL	Select dataset	3a_Geom
HISTPROP	Propagate input file history	Yes
SORTOPT	Trace read option	Sort
IDA_OPT	Interactive Data Access?	No
PKEYNAM	Select primary trace header entry	Source index number
		No trace header entry
SKEYNAM	Select secondary trace header entry	selected
KEYLIST	Sort order list for dataset	*/
MEM_SORT	Presort in memory or on disk?	Memory

ITERATE Read the data multiple times? No	-	Anândiaa C		-
	ITERATE	Read the data multiple times?	No	

Apêndice C

5. Bandpass Filter		
Name	Text	Value
FLT_TYPE	TYPE of filter	Single Filter
FLT_SPEC	Type of filter specification	Ormsby bandpass
PHASE	PHASE of filter	Zero
IDOMAIN	Domain for filter application	Frequency
PCT_PAD	Percent zero padding for FFT's	25.0
NOTCH_OPTION	Apply a notch filter?	No
FLT_FREQ1	Ormsby filter frequency values	50-100-200-250
REMUTE_OPTION	Re-apply trace mute after filter?	Yes
	6. Disk Data Output	
Name	Text	Value
DESCRIPT	Output Dataset Filename	3a_Filtrado
STATUS	New, or Existing, File?	New
ТМАХ	Record length to output	0.0
COMPRESS	Trace sample format	32 bit
ALTSTORE	Skip primary disk storage?	No

Flow 04-Decon Apêndice D

1. Disk Data Input			
Name	Text	Value	
LABEL	Select dataset	3a_Filtrado	
HISTPROP	Propagate input file history	Yes	
SORTOPT	Trace read option	Sort	
IDA_OPT	Interactive Data Access?	No	
PKEYNAM	Select primary trace header entry	Source index number	
SKEYNAM	Select secondary trace header entry	No trace header entry selected	
KEYLIST	Sort order list for dataset	*/	
MEM_SORT	Presort in memory or on disk?	Memory	
ITERATE	Read the data multiple times?	No	
THDRONLY	Process trace headers only?	No	
SR_OPTION	Override input data's sample interval?	No	
	2. True Amplitude Recovery		
Name	Text	Value	
APPLY_SD	Apply spherical divergence corrections?	No	
APPLY_IE	Apply inelastic attenuation corrections?	No	
APPLY_DB	Apply dB/sec corrections?	Yes	
TAR_REF	dB/sec correction start time	Time zero	
DB_PER_S	dB/sec correction constant	6.0	
APPLY_PW	Apply time raised to a power corrections?	No	
TAR MODE	APPLY or REMOVE amplitude corrections?	Applv	
TIME MAX	Maximum application TIME	0.0	
 NORM_SRC	Normalization source	Calculate	
REF TIME	Normalization reference TIME	0.0	
	3. Bandpass Filter		
Name	Text	Value	
FLT_TYPE	TYPE of filter	Single Filter	
FLT_SPEC	Type of filter specification	Ormsby bandpass	
PHASE	PHASE of filter	Zero	
IDOMAIN	Domain for filter application	Frequency	
PCT_PAD	Percent zero padding for FFT's	25.0	
NOTCH_OPTION	Apply a notch filter?	No	
FLT_FREQ1	Ormsby filter frequency values	50-80-200-250	
REMUTE_OPTION	Re-apply trace mute after filter?	Yes	
	4. Spiking/Predictive Decon		
Name	Text	Value	
DCN_TYPE	TYPE of deconvolution	Minimum phase spiking	
DCN_OPER	Decon operator length(s)	80	
TAPEROPT	Apply user specified taper?	No	
DCN_WHTN	Operator 'white noise' level(s)	1	
TWIN_MIN	Window rejection factor	2.0	
GATETIME	Time gate reference	Time 0	
DB_OPTION	Get decon gates from the DATABASE?	Yes	
GATENAME	SELECT decon gate parameter file	decon	
IOUT_OPT	Output traces or filters	Normal decon output	
FILTER_OPTION	Apply a bandpass filter after decon?	No	
REMUTE_OPTION	Re-apply trace mute after decon?	Yes	

T

Apêndice D

5. Disk Data Output		
Name	Text	Value
DESCRIPT	Output Dataset Filename	3a_Decon
STATUS	New, or Existing, File?	New
ТМАХ	Record length to output	0.0
COMPRESS	Trace sample format	32 bit

Flow 05-Velan

Apêndice E

1. 2D Supergather Formation*			
Name	Text	Value	
LABEL	Select dataset	3a_Decon	
MEM_SORT	Presort in memory or on disk?	Memory	
FOLD	Maximum CDP FOLD	15	
MODE	Location selection	GRID	
XLINE1	Minimum center CDP number	50	
XLINE2	Maximum center CDP number	8779	
DXLINE	CDP increment	20	
SMHXLINE	CDPs to combine	7	
	2. Automatic Gain Control	•	
Name	Text	Value	
MODE_APP	Application mode	APPLY	
MODE_AMP	Type of AGC scalar	MEAN	
AGCLEN	AGC operator length	500.0	
MODE_WIN	BASIS for scalar application	Centered	
MODE_OPTION	Exclude hard zeroes?	Yes	
ROBUST_OPTION	Robust Scaling?	No	
	3. Bandpass Filter		
Name	Text	Value	
FLT_TYPE	TYPE of filter	Single Filter	
FLT_SPEC	Type of filter specification	Ormsby bandpass	
PHASE	PHASE of filter	Zero	
IDOMAIN	Domain for filter application	Frequency	
PCT_PAD	Percent zero padding for FFT's	25.0	
NOTCH_OPTION	Apply a notch filter?	No	
FLT_FREQ1	Ormsby filter frequency values	20-70-200-250	
REMUTE_OPTION	Re-apply trace mute after filter?	Yes	

Apêndice E

4. Velocity Analysis Precompute			
Name	Text	Value	
RMO	Perform residual velocity analysis?	NONE	
NSMASH	Number of CDPs to sum into gather	5	
SMASHNMO	Apply partial NMO-to-binning	Yes	
SMASHSTA	Apply differential CDP mean statics?	Yes	
INITDIST	Absolute offset of first bin center	50.0	
BINSIZE	Bin size for vertically summing offsets	25.0	
MAXOFFS	Maximum offset	193.8	
USEAOFF	Use absolute value of offset for stacking?	Yes	
MULTINMO	Compute NMO for every velocity function?	No	
MINVEL	Minimum semblance analysis value	1200.0	
MAXVEL	Maximum semblance analysis value	6000.0	
NVELS	Number of semblance calculations	50	
VELSPACE	Semblance velocity axis	Equal Velocity	
WINSIZE	Semblance sample rate	20.0	
RSMOOTH	Semblance calculation window	40.0	
NVFS	Number of stack velocity functions	11	
NSTACK	Number of CDPS per stack strip	7	
NORMSTK	Scale stacks by number of live samples summed	Yes	
VFSTYPE	Method of computing velocity functions	Constant Velocity	
NORM	Semblance normalization mode	Scale Time Slice	
RPOWER	Contrast power factor	1.0	
RNOISE	Contrast noise factor	0.1	
	Get guide function from an existing parameter		
GUIDEOPT	table?	No	
MINGDVEL	Guide minimum value	1200.0	
MAXGDVEL	Guide maximum time value	6000.0	
STRETCH	Maximum stretch percentage for NMO	30.0	
LONGOFFS	Long offset moveout correction?	NONE	
MUTEMODE	Use a picked mute?	NONE	
	5. Disk Data Output		
Name	Text	Value	
DESCRIPT	Output Dataset Filename	3a_Precompute	
STATUS	New, or Existing, File?	New	
TMAX	Record length to output	0.0	
COMPRESS	Trace sample format	32 bit	
ALTSTORE	Skip primary disk storage?	No	

Apêndice E

6. Disk Data Input		
Name	Text	Value
LABEL	Select dataset	3a_Precompute
HISTPROP	Propagate input file history	Yes
SORTOPT	Trace read option	Sort
IDA_OPT	Interactive Data Access?	No
		Supergather Bin
PKEYNAM	Select primary trace header entry	Number
		No trace header entry
SKEYNAM	Select secondary trace header entry	selected
KEYLIST	Sort order list for dataset	55-9999/
MEM_SORT	Presort in memory or on disk?	Memory
ITERATE	Read the data multiple times?	No
THDRONLY	Process trace headers only?	No
SR_OPTION	Override input data's sample interval?	No
	7. Velocity Analysis	
Name	Text	Value
XSERVER	Select display DEVICE	This Screen
NEWTABLE	Table to store velocity picks	Velan
PRECOMP	Is the incoming data Precomputed?	Yes
RMO	Perform residual velocity analysis?	NONE
VIEWFLAG	Set which items are visible?	No
	Set semblance scaling and autosnap	
SEMBPARM	parameters?	No
MUTEMODE	Pick/apply a mute?	NONE
SHOWHOR	Select/Display horizons?	NONE
PD_OPT	Interact with other processes using PD?	No
	Get guide function from an existing parameter	
GUIDEOPT	table?	No
MINGDVEL	Guide minimum value	1500.0
MAXGDVEL	Guide maximum time value	4000.0
STRETCH	Maximum stretch percentage for NMO	30.0
LONGOFFS	Long offset moveout correction?	NONE
LASTINT	Interval velocity below last knee	0.0
COPYPICK	Copy picks to next location	No
	8. Volume Viewer/Editor*	
Name	Text	Value
XSERVER	Display DEVICE for cross-section	This Screen
ZVAR	Work in Time or Depth?	Time
UNITSYS	Unit System	Data Base
XYBDSRC2	Source of surface coordinate limits	Volume
ZBNDSRC	Source of depth coordinate limits	Volume

SPACE_0		NIL
VELTYPET	Input Volume Type	Stacking (RMS) Velocity
INVEL	Select input volume	Velan
VOLDAT1	To which datum is the velocity volume referenced?	Floating Datum
SPACE_1		NIL
DISPSEIS	Display poststack seismic data?	No
SPACE_2		NIL
HORDAT1	To which datum are the horizons referenced?	Final Datum
VAPD	Interact with other processes using PD?	Yes
DISPGATH	Display gather locations?	Yes

Flow 06-Stack Apêndice F

1. Disk Data Input			
Name	Text	Value	
LABEL	Select dataset	3a_Decon	
HISTPROP	Propagate input file history	Yes	
SORTOPT	Trace read option	Sort	
IDA_OPT	Interactive Data Access?	No	
PKEYNAM	Select primary trace header entry	CDP bin number	
SKEYNAM	Select secondary trace header entry	Absolute value of offset	
TKEYNAM	Select tertiary trace header entry	No trace header entry selected	
KEYLIST	Sort order list for dataset	*.*/	
MEM_SORT	Presort in memory or on disk?	Memory	
ITERATE	Read the data multiple times?	No	
THDRONLY	Process trace headers only?	No	
SR_OPTION	Override input data's sample interval?	No	
	2. Automatic Gain Contro		
Name	Text	Value	
MODE_APP	Application mode	APPLY	
MODE_AMP	Type of AGC scalar	MEAN	
AGCLEN	AGC operator length	500.0	
MODE_WIN	BASIS for scalar application	Centered	
MODE_OPTION	Exclude hard zeroes?	Yes	
ROBUST_OPTION	Robust Scaling?	No	
	3. Bandpass Filter		
Name	Text	Value	
FLT_TYPE	TYPE of filter	Single Filter	
FLT_SPEC	Type of filter specification	Ormsby bandpass	
PHASE	PHASE of filter	Zero	
IDOMAIN	Domain for filter application	Frequency	
PCT_PAD	Percent zero padding for FFT's	25.0	
NOTCH_OPTION	Apply a notch filter?	No	
FLT_FREQ1	Ormsby filter frequency values	50-80-200-250	
REMUTE_OPTION	Re-apply trace mute after filter?	Yes	
	4. Normal Moveout Correct	ion	
Name	Text	Value	
DIRECT	Direction for NMO application	FORWARD	
STR_MUTE	Stretch mute percentage	30.0	
DO_STAT	Apply any remaining static during NMO?	Yes	
NMO_APLD	Disable check for previously applied NMO?	No	
IPAR HAL	Apply partial NMO?	No	
LONGOFFS2	Long offset correction?	NONE	
VEL_OPTION	Get velocities from the database?	Yes	
VELNAME	SELECT Velocity parameter file	veian	
5. CDP/Ensemble Stack			
	Text		
SKI_UKUK		UDF Moon	
DO STAT	Apply final datum station after stack?	0.3 No	
	Apply final datum statics after stack?	NU	
INIVIO_APLD	Has NIVIO been applied?	res	

Apêndice F

6. F-X Decon		
Name	Text	Value
FLT_TYPE	TYPE of filter	Wiener Levinson
PCTN	Percentage of white noise	0.0
NTRW	Horizontal window length	10
NPF	Number of filter samples	5
TIMEW	Time window length	600.0
TOVLP	Time window overlap	50.0
FR1	F-X filter start frequency	80.0
FR2	F-X filter end frequency	200.0
NPASSES	Number of times to apply F-X filter to each trace	1
HDRLIMIT	Apply filter only to selected traces?	No
REMUTE	Re-apply trace mute after filter?	Yes
	7. Bandpass Filter	-
Name	Text	Value
FLT_TYPE	TYPE of filter	Single Filter
FLT_SPEC	Type of filter specification	Ormsby bandpass
PHASE	PHASE of filter	Minimum
RNOISE	Percent additive noise factor	5.0
IDOMAIN	Domain for filter application	Frequency
PCT_PAD	Percent zero padding for FFT's	25.0
NOTCH_OPTION	Apply a notch filter?	No
FLT_FREQ1	Ormsby filter frequency values	50-80-200-250
REMUTE_OPTION	Re-apply trace mute after filter?	Yes
	8. Trace Display Label	
Name	Text	Value
LABEL	Trace label	stack_cdp
9. Disk Data Output		
Name	Text	Value
DESCRIPT	Output Dataset Filename	3a_Stack1_32bits
STATUS	New, or Existing, File?	New
TMAX	Record length to output	0.0
COMPRESS	Trace sample format	32 bit
ALTSTORE	Skip primary disk storage?	No

Flow 07-Migra-pos Apêndice G

1. Disk Data Input		
Name	Text	Value
LABEL	Select dataset	3a_Stack1_32bits
HISTPROP	Propagate input file history	Yes
SORTOPT	Trace read option	Get All
ITERATE	Read the data multiple times?	No
THDRONLY	Process trace headers only?	No
SR_OPTION	Override input data's sample interval?	No
	2. Kirchhoff Time Mig.	
Name	Text	Value
DCDP	CDP interval (feet or meters)	6.25
FMAX	Maximum frequency to migrate (in Hz)	200.0
APER	Migration aperture (feet or meters)	0.0
MAX_ANGLE	Maximum dip to migrate	180.0
CHECKALIASING	Avoid spatial aliasing?	Yes
VEL_B	Get RMS velocities from database?	Yes
VELF	Select RMS vs.time velocity file	velan_teste
CHANGE_MEM	Change maximum memory usage?	No
CHANGETAPERING	Change the default tapering?	No
REMUTE_B	Re-apply trace mutes?	Yes
REKILL_B	Re-kill dead traces?	Yes
	3. Trace Display Label	
Name	Text	Value
LABEL	Trace label	3a_Final Migrada
	4. F-X Decon	
Name	Text	Value
FLT_TYPE	TYPE of filter	Wiener Levinson
PCTN	Percentage of white noise	0.0
NTRW	Horizontal window length	10
NPF	Number of filter samples	5
TIMEW	Time window length	500.0
TOVLP	Time window overlap	100.0
FR1	F-X filter start frequency	70.0
FR2	F-X filter end frequency	200.0
NPASSES	Number of times to apply F-X filter to each trace	1
HDRLIMIT	Apply filter only to selected traces?	No
REMUTE	Re-apply trace mute after filter?	Yes

Apêndice G

5. Bandpass Filter				
Name	Text	Value		
FLT_TYPE	TYPE of filter	Single Filter		
FLT_SPEC	Type of filter specification	Ormsby bandpass		
PHASE	PHASE of filter	Zero		
IDOMAIN	Domain for filter application	Frequency		
PCT_PAD	Percent zero padding for FFT's	25.0		
NOTCH_OPTION	Apply a notch filter?	No		
FLT_FREQ1	Ormsby filter frequency values	50-100-200-250		
REMUTE_OPTION	Re-apply trace mute after filter?	Yes		
6. Trace Display				
Name	Text	Value		
XSERVER	Select display DEVICE	This Screen		
TSTART	Specify display START time	0.0		
TEND	Specify display END time	600.0		
NUM_DISPLAY_TRACES	Maximum number of TRACES/screen	0		
NUM_ENSEMBLES	Number of ENSEMBLES(line segments)/screen	1		
ENS_PAN_INC	Ensemble increment	0		
VAR_SPACE	Do you want to use variable trace spacing?	No		
OUTPUT_MODE	Output Mode	When Done		
DISPMODE	Trace display MODE	WT/VA		
VARBIAS	Offset BIAS for variable area	0.0		
INTERP	Interpolation	Smooth		
HEADBOARD	Header Plot Parameter	No trace header selected		
AUTOSAVE	Automatically SAVE screens?	Yes		
MAXIMAGES	Maximum number of screen images to save.	10		
SAVETYPE	Save screens in Color?	Yes		
SAVEWHERE	Where to save screen images	Xserver		
NBATCH	Number of screens to collect	1		
DIRECTION	DIRECTION of trace plotting	Left to right		
POLARITY	POLARITY of trace display	Normal		
LKEYNAM1	Primary trace LABELING header entry	Live source number		
LKEYNAM2	Secondary trace LABELING header entry	Recording channel number		
LABLMOD2	MODE of Secondary trace annotation	Incremental		
LABLINC2	INCREMENT for Secondary trace annotation	5		
SCALEMODE	Trace scaling mode	Conventional		
CLIP	Trace excursion at which to CLIP	2.0		
ASCALAR	SCALAR for sample value multiplication	1.0		
SCALEOPT	Trace scaling option	Individual		
NPANEL	Number of display panels	1		
ORIENTATION	Trace Orientation	Vertical		

Apêndice G

7. Disk Data Output			
Name	Text	Value	
DESCRIPT	Output Dataset Filename	3a_Migra_pos	
STATUS	New, or Existing, File?	New	
ТМАХ	Record length to output	0.0	
COMPRESS	Trace sample format	32 bit	
ALTSTORE	Skip primary disk storage?	No	

Flow 08-Seg-Y Apêndice H

1. Disk Data Input				
Name	Text	Value		
LABEL	Select dataset	3a_Stack1_32bits		
HISTPROP	Propagate input file history	Yes		
SORTOPT	Trace read option	Get All		
ITERATE	Read the data multiple times?	No		
THDRONLY	Process trace headers only?	No		
SR_OPTION	Override input data's sample interval?	No		
2. Header Values				
Name	Text	Value		
OUT_DEVC	Output device	Output		
IENDENS	List only last trace in ensemble?	Yes		
HDR_LIST	SPECIFY header entries	SOURCE,SOU_X,SOU_Y,CDP,CDP_X,CDP_Y,		
	3. SEG-Y Ou	tput		
Name	Text	Value		
FLAVOUR	Type of SEG-Y	Standard		
STORAGE	Type of storage to use	Disk Image		
FILENAME	Enter DISK file path name	/home/r5000/Desktop/Seg_Y/3A_STK.sgy		
VBROWSE	Browse for DISK file path name(s)	Browse		
POLARITY	Polarity of output data	UNKNOWN		
STORE	EBCDIC Reel Header Generation Method	User type in		
DISPYHDR	Display dataset information option	None		
JOB_ID	Job ID # for binary header	9999		
LINE_NUM	Line # for binary header	3		
FORMAT	Desired trace format	IBM Real		
COORSCAL	Use the coordinate scalars?	No		
TIMESCAL	Use the Rev 1 time scalars?	No		
ТМАХ	Maximum time to output	0.0		
IOVER	Remap SEGY header values?	No		